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Superconducting devices subject to strong charging energy interactions and Coulomb blockade are one of the
key elements for the development of nanoelectronics and constitute common building blocks of quantum com-
putation platforms and topological superconducting setups. The study of their transport properties is nontrivial
and some of their nonperturbative aspects are hard to capture with the most ordinary techniques. Here we present
a matrix product state approach to simulate the real-time dynamics of these systems. We propose a study of their
transport based on the analysis of the currents after quantum quenches connecting such devices with external
leads. Our method is based on the combination of a Wilson chain construction for the leads and a mean-field
BCS description for the superconducting scatterers. In particular, we employ a quasiparticle energy eigenbasis
which greatly reduces their entanglement growth and we introduce an auxiliary degree of freedom to encode the
device’s total charge. This approach allows us to treat nonperturbatively both their charging energy and coupling
with external electrodes. We show that our construction is able to describe the Coulomb diamond structure of
a superconducting dot with subgap states, including its sequential tunneling and cotunneling features. We also
study the conductance zero-bias peaks caused by Majorana modes in a blockaded Kitaev chain and compare our

results with common Breit-Wigner predictions.

DOI: 10.1103/PhysRevB.106.094308

I. INTRODUCTION

The study of the transport properties of nanostructures is
a pillar in the understanding of semiconducting and super-
conducting materials and in the engineering of devices for
quantum technologies. Quantum dots, single-electron transis-
tors, and superconducting Cooper pair boxes are fundamental
building blocks of many of the envisioned devices for quan-
tum information processing based on solid-state architectures,
and the main diagnostic tools adopted in their experimental
investigation are provided by tunneling spectroscopy. These
Coulomb blockaded elements play a crucial role in the design
of novel platforms for nanoelectronics and hybrid heterostruc-
tures, as the ones adopted, for instance, for the fabrication of
topological superconductors. It is therefore of the uttermost
importance to develop suitable theoretical and numerical tools
to simulate their dynamics and estimate the nonlinear conduc-
tance of such nanostructures characterized by strong charging
energy effects.

The most common strategies to model the transport across
these interacting systems typically rely on master-equation ap-
proaches [1] and perturbation theory over the coupling with
the external leads (see, for example, the review [2]). Such
techniques have been very fruitful in describing many block-
aded devices but they often fail in capturing the emergence
of nonperturbative phenomena, as the ones characterizing, for
example, several impurity problems.

2469-9950/2022/106(9)/094308(20)
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For strongly correlated quantum impurity systems, a
plethora of perturbative renormalization group techniques
have been developed since the Wilsonian formulation of the
renormalization group and numerical renormalization group
(NRG) [3,4]. These methods are efficient to describe toy
models based on a reduced number of degrees of freedom.
They capture indeed the main universal features of the systems
under investigation. However, they become computationally
demanding when dealing with more realistic scenarios that
include a larger number of degrees of freedom, and they
suffer from limitations when dealing with nonequilibrium
steady states [5,6]. Therefore the development of novel and
complementary techniques to study the transport of complex
many-body scatterers is a task of considerable importance in
the modeling of nanodevices.

In this work, we present a nonperturbative strategy for
the evaluation of the nonlinear conductance of blockaded
and superconducting quantum scatterers from a microscopic
and out-of-equilibrium perspective. In particular, we will ad-
dress systems with both strong charging energies and sizable
couplings with the external leads, while accounting for the
backaction of the scatterer onto the leads.

In this respect, tensor networks [7,8] offer a very efficient
set of tools to study the dynamics of quasi 1D interacting
models, with the possibility of modeling interaction effects
in a nonperturbative way, and limitations set instead by the

©2022 American Physical Society
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growth of the entanglement of the system during its time
evolution.

We will present an approach based on matrix product
states (MPS) and the time dependent variational principle
(TDVP) [9,10] to estimate the conductance of blockaded de-
vices through the real-time simulation of their dynamics. This
allows us to evaluate the current as a function of time, to derive
its transient behavior, and to estimate the transport features
of these interacting systems in the stationary limit. We focus
in particular on topological superconducting models, where
the interplay between charging energy and superconductivity
gives rise to the main signatures of Majorana modes observed
so far in tunnel spectroscopy experiments [11].

Previous works have successfully applied time-dependent
density matrix renormalization group (DMRG) to the study of
conductance and noise in the interacting resonant level model
out of equilibrium [5,12-18] and to the evaluation of the
transport in simple nanostructures [19]. Additionally, hybrid
NRG-DMRG techniques have been adopted for simulating
the quench dynamics of several quantum impurity models
[20,21]. Very recently, the dynamics after a quench of the
Anderson impurity models have also been studied through
TDVP [22-24].

Our approach is developed from similar techniques: we
will consider systems composed by a Coulomb blockaded
scatterer and two external leads and we will perform TDVP
simulations of their dynamics after a quantum quench. Our
algorithm adopts a Wilson chain description of the leads in
terms of energy eigenstates inspired by NRG studies. The
scatterer is instead represented based on two main technical
ingredients. (i) We adopt a BCS mean-field description and, in
particular, we employ a (Bogoliubov) single-particle energy
eigenstate basis to model the inner degrees of freedom of
the scatterer in the MPS; this greatly reduces the entangle-
ment growth during the evolution after the quench. (i) We
introduce an additional degree of freedom that keeps track of
its charge dynamics; this allows us to capture the Coulomb
charging energy of the system, obviating the violation of its
particle number conservation caused by the BCS mean-field
Hamiltonian [25]. The combination of these two elements
allows us to avoid the necessity of simulating a number-
conserving system with long-range interactions (for instance
the Richardson-Gaudin model [26], see also the DMRG cal-
culation of the spectra of models involving superconducting
leads and quantum dots in Refs. [27-29]), whose dynamics
is typically difficult to simulate over sufficiently long time
durations.

The quantum quench simulations we perform are reminis-
cent of the study of quenches in interacting one-dimensional
models [30], as, for example, the domain wall melting in
the quantum XXZ chains (see, for instance, Refs. [31-34]).
In integrable models, these real-time simulations are known
to provide good electric and thermal conductance estimates,
which typically match the Landauer Biittiker predictions ob-
tained in a bosonization framework [35]. Our calculations
extend these results to general interacting models in which
a Landauer Biittiker approach cannot be straightforwardly
applied.

The rest of the paper is organized as follows. In Sec. II,
we describe the general structure of the blockaded systems

we analyze. In Sec. III, we discuss the general relation be-
tween quantum quench dynamics and transport properties in
these systems. In Sec. IV, we outline the main features of
our tensor network simulations, and in Sec. V, we present
our results for two paradigmatic models of superconducting
scatterers, a generic p-wave superconducting quantum dot and
the (blockaded) Kitaev chain, which provides a toy model for
topological superconductors. For the former, our simulations
provide estimates for the cotunneling conductance; for the
latter, our nonperturbative approach confirms the validity of
the Breit-Wigner prediction in Ref. [36] for small coupling,
but evidences the onset of additional effects in a strong cou-
pling regime. Finally we illustrate our conclusions in Sec. VI.
Further details on the inclusion of and additional Josephson
coupling, the symmetries of our MPS construction, the rate
equation estimates and the comparison of different quench
protocols are presented in the appendices.

II. MODEL

In this work, we analyze transport problems in Coulomb
blockaded devices connected with external one-dimensional
metallic leads. To illustrate our method, we focus on systems
of spinless fermions and only two leads; however the general-
ization to spinful models and multiple leads is straightforward.

The general structure of the Hamiltonian we study is

ﬁT = I'/I\leads + f{\sys + f{\c + [:I\tunn: (1

where ffleads describes the two metallic leads; F/I\sys defines
the scatterer device whose transport properties are under
scrutiny, and it may include interactions and a mean-field
superconducting BCS pairing; H. determines its charging
energy, which is the specific interaction responsible for the
Coulomb blockaded regime; finally, Hy,,, represents the tun-
neling Hamiltonian between the device and the leads (see the
schematic representation in Fig. 1).

The paradigmatic system we consider is a one dimen-
sional p-wave topological superconductor, hence we describe
the scatterer as a Kitaev chain [37] with open boundaries.
Its charging energy is given by the electrostatic repulsion
arising from the finite capacitance of the floating—i.e., not
grounded—device. The scatterer energy is thus defined by the
following Hamiltonian contributions:

e e i
[~td],d; + Ad, d] + He] - p,dld;, ()

H, = E.(N —n,)?, 3)

where 1, is the nearest-neighbors hopping amplitude, A the p-
wave supeconducting pairing, and p, the chemical potential.
E. = % is the energy associated to the addition of a single
charge e to the system, which here we consider to have an
effective capacitance C. The electrostatic energy then depends
on the difference between the charge of the scatterer N and the
charge ng, typically induced in the experiments by a tunable
voltage gate. Importantly, the Kitaev Hamiltonian does not
conserve the particle number: superconductivity is indeed in-
cluded in a BCS mean-field approximation. The device charge
N, instead, is a conserved quantity if the scatterer is isolated
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FIG. 1. (a) Sketch of the system we model with matrix product
states: a floating superconducting (SC) island is connected to two
normal leads, where we measure a single electron current. The gate
voltage V, is used to tune the induced charge on the superconductor
ng = eVg . (b) Matrix product state representation of the system. Each
MPS 91te corresponds to a single-particle energy level of either the
leads or the SC device (for t., = 0). Yellow and orange circles
represent the single-particle eigenstates of the left and right leads,
respectively, ordered by their energies €, ;, whereas blue circles are
the quasiparticle states of the superconductor, with energies ¢,. The
square MPS site is the bosonic auxiliary site encoding the charge of
the device. The leads energy levels are filled up to the corresponding
chemical potential fi;z; the states in the interval V, = u; — ug are
those mostly involved in the transport process.

and it accounts for the charge of both the Cooper pair conden-
sate and_the quasiparticle excitations. In particular, the total
charge N is different from the operator Z d; Ta’ which takes
into account only the quasiparticle contrlbutlon to the charge;
however, they share the same fermionic parity. We emphasize
that the Hamiltonian Hiys can be easily generalized to different
lattice models; in particular, short-range interactions can also
be included with additional but affordable computational cost.
Hereafter we will label with M the number of sites involved
in Hys.

The leads are described by simple one-dimensional
nearest-neighbor hopping Hamiltonians

L
I:I\leads = Z Z

a=L,R [=1

fozca 116q, T He] = “a@;zéa,z’ )
where o = L, R labels the two different leads. The sites are
ordered such that in both leads we start counting from the con-
tact with the scatterer. Notice also that the hopping amplitude
can be site dependent: specifically, we choose an exponential
decay of the form

18 = toe =1/, (%)

with a decay length & < L, building what is known in the liter-
ature as Wilson chain [3,38,39]. Physically, it corresponds to
a logarithmic discretization of the original continuous Hamil-
tonian, where the lattice spacing increases as we move farther
away from the scatterer. This choice provides two main ad-
vantages, which will become clearer in the following section:
first, there are more eigenvalues with energies close to the
Fermi level, which increases our resolution close to zero volt-
age bias in the quench protocols; second, the exponentially

decaying hopping prevents the current to reach the end of the
leads, acting as a sort of effective sink. This improves the
convergence in time towards the intermediate quasi-steady-
state we are interested in to compute transport properties. In
the rest of the paper, we consider the two leads as equivalent
under inversion symmetry, so we can drop the « index in the
hopping amplitude, and we set the zero of the energy at the
Fermi level corresponding to half-filled leads.

Finally, the tunneling between leads and system is de-
scribed by

Humn = —~tep (d]e, | +He) —teg(dl e, +He).  (6)

In the following, we will also consider #. ; = t. g = t. for the
sake of simplicity.

III. TRANSPORT PROPERTIES FROM QUANTUM
QUENCHES

Our main goal is to compute the conductance of a given
device from its nonequilibrium dynamics, without relying on
perturbative approaches. To this purpose, we simulate the time
evolution of the system after a quantum quench and extract the
conductance from the emerging quasisteady state.

In the thermodynamic limit and for noninteracting mod-
els, the system relaxes toward a nonequilibrium steady-state
with a current flow corresponding to the prediction of the
Landauer-Biittiker (LB) formula [40] after a quench in which
leads with different densities are suddenly connected at time
t =0 (. (1) «x O(t), with ® being the Heaviside step function).
In finite systems, instead, the LB regime appears only as a
transient [41] before the current is reflected back from the
edges (see Fig. 2 for a qualitative example) and eventually
a trivial steady state is reached. An estimate of the conduc-
tance of the system must rely on this transient nonequilibrium
quasi steady state (NEQSS) which is, therefore, the object
of our investigation. When the lead Hamiltonian Hje,qs in-
cludes only local terms, the post-quench time evolution obeys
a Lieb-Robinson bound [42,43]; the central scatterer region
is not affected by the finite size effects of the simulation
until the quasiparticles excited by the quench in the cen-
tral region reach the boundaries and come back. Therefore
we can consider the NEQSS as a faithful representation of
what happens in the thermodynamic limit (see, for instance,
Refs. [31,40,44,45]).

To bring the system out of equilibrium, we can consider
two different quench protocols [41].

(1) u quench. The system is initially prepared in the ground
state of Hy where both leads have the same chemical potential.
Att =0, a voltage bias V;, = up — ug is 1ntroduced and the
system evolves accordingly to the new Hamiltonian HT(V;,)

(2) Density quench. The device and the leads are initially
decoupled and the system is prepared in the ground state of
Hgys + Hieaqs, Where a voltage bias V;, is used to induce a
density difference between the two leads.AAt t = 0, the bias
is turned off and the system evolves with Hy.

After the quench, me measure the current in the leads,

following the definition:
L (t) = 2y (W(t)[e] &l 1Y), (D

where |W(t)) is the time-evolved many-body wave function.

a,l+1 otl
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FIG. 2. Exact evolution of a noninteracting impurity model. (a) Space-time profile of the current, with uniform hopping in the leads.
The vertical black lines mark the position of the impurity site. (b) Space-time profile of the current when the hopping in the leads decays
exponentially with a characteristic length & = 30. (c) Comparison between the time evolution of the current at the left and right edge of the
scattering region, for uniform leads (§ = oo, dashed lines) and Wilson chains (§ = 30, solid lines). The horizontal dot-dashed line indicates
the Landauer-Biittiker prediction. The inset zooms in the time interval tz. /% € [10, 20]; the left and right currents for & — oo are perfectly
superimposed. The energy of the impurity site is &;,, = 0.1#; and the bias is chosen to be in resonance, hence V,, = &jy,. The other parameters

are £ = 100 and ¢z, = 0.25¢.

Although for small biases the two quench protocols give
consistent results, they are not exactly equivalent. This can be
easily seen if we consider a noninteracting case and the related
structure of its scattering matrix in one dimension. In the u
quench, the leads have different chemical potential, meaning
that an energy step is added on top of the scattering matrix
of the device. Hence, momentum is not conserved when a
particle is transmitted across the device. In the density quench,
instead, far from the device the two leads have the same chem-
ical potential and the momentum is a good quantum number
for the scattering process.

In our simulation, we have verified that the density quench
protocol gives usually better results for the estimates of the
conductance, both in terms of a shorter relaxation time before
reaching the quasisteady state and a more stable current pro-
file. Thus, unless otherwise stated, all the results we present
are obtained with the density quench protocol. Concerning
the simulation of the time evolution of the system, however,
both quench protocols can be implemented with analogous
accuracy.

To illustrate the main physical properties and limitations of
studying transport properties through quantum quenches, we
discuss next the performance of the method on a noninteract-
ing impurity model. First, let us consider the situation where
the leads have a uniform hopping amplitude, corresponding to
an infinite decay length & — oo. The single site impurity with
energy &imp is described by the Hamiltonian Hgys = simpdAW .
In Fig. 2, we summarize the main characteristics of the quench
protocol. The system is initialized with a density imbalance
between the left and the right leads, which induces a current
flow in the chain. At first, the current involves only the sites
immediately adjacent to the impurity. The initial discontinuity
in the density profile splits into two fronts counterpropagating
along the two leads with constant speed in the whole system.
This is clearly shown in Fig. 2(a), where we plot the evolution
of current density /(t) in time and space. In particular, we em-
phasize than inside this broadening “cone” a NEQSS emerges,

carrying a steady current consistent with the LB result, as seen
in Fig. 2(c).

However, the finite length of the chain has two conse-
quences: the first, and more obvious, is that the current is
reflected back from the edges of the leads and the NEQSS
changes when this signal reaches again the edges of the scat-
terer. In general, different NEQSS exist inside each of these
rhomboids confined by the propagating signal, as suggested
by the different plateaus displayed by the data corresponding
to uniform leads (§ = oo, dashed lines) in Fig. 2(c). Even-
tually, the system will reach a trivial steady-state with zero
current.

The second consequence is the limit on the energy reso-
lution due to the finite level spacing in the leads which is of
the order 2f,/L. This becomes particularly important when
computing the current from a small voltage bias, because
in the initial state the particle number in the two leads will
differ only by a few units. As a consequence, the current
develops finite size corrections which deviate from the exact
LB formula, again visible from Fig. 2(c). Analogous issues
emerge also for the i quenches.

Both these problems are partially cured by choosing a finite
decay length for the leads’ hopping amplitude, as reported in
panels (b) and (c) of Fig. 2. Indeed, now the reflection from
the edges of the system is strongly suppressed and quasi-
stationary state survives for longer time. Also the finite size
corrections with respect to the LB formula are reduced, at the
cost of a noisier current signal. However, this noise is easily
eliminated by averaging the current in time, after the plateau
is reached.

Physically, the Wilson chain construction in Eqgs. (4) and
(5) can be thought as a real space renormalization applied to
the leads [3,38], where the further we are from the contact
with the scatterer, the more chain sites are merged together.
By comparing panels (a) and (b) in Fig. 2, it is easy to
realize that the introduction of the exponential dumping of
the tunneling amplitude 7y amounts to a compression of the
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spreading correlation cone. While in the uniform chain the
signal travels with constant Fermi speed v, = 21y, leading to
a space-time profile t = 12_71 in the Wilson chain the speed is
exponentially damped. This results in the space-time profile
t= fTO(e(’ —D/& _1). In this way, we can simulate effectively
larger system sizes, thus reducing the finite size effects. This
construction modifies also the spectrum of the leads: the
eigenvalue spacing is denser at low energies, thus allowing
a finer resolution at small voltage biases.

The main difficulty of this approach is the choice of a
proper decay length; if £ is too large, its effect is negligible
and if it is too small the current is reflected back from the
effective edge created by the vanishing hopping amplitude.
This trade-off also depends on the strength of the bias, since
larger values of V), also require larger decay length. In our
MPS simulations, we adjust heuristically the value of & by
choosing a value that does not introduce a nonphysical reflec-
tion in the current before the lead edges.

For the rest of the paper, unless otherwise specified, the
leads will be described by two chains of £ = 100 sites, with a
bare hopping amplitude 7, = 1 that sets all other energy scales
in the model and a decaying length & = 40. The latter has been
chosen in such a way that all the data we present do not display
an artificial reflection of the current from the edges and the
signal converges fast enough enabling us to average it over a
sufficiently large time interval.

IV. MATRIX PRODUCT STATE IMPLEMENTATION

We implement the quench dynamics of the systems by
using matrix product state (MPS) techniques [7]. As all tensor
network techniques, the underlying approximation restricts
the maximal entanglement allowed in the simulated state at
any time. In particular, we adopt a maximum bond dimension
x which varies as a function of time and is not uniform in the
MPS construction. In the following numerical simulations, the
maximum bond dimension is limited by x < 2500, which im-
plies that the simulation of the time evolution of the system is
reliable until the correlations between its partitions are below
a suitable threshold, which can be estimated by the maximum
value of the entanglement entropy Spax = log, x.-

Concerning the quench protocol, we will focus on the
density quench presented in Sec. III: the scatterer is initially
decoupled and the voltage bias V, is symmetrically applied
(up = —ug = V3/2) to induce different electron densities in
the two leads before the quench, corresponding to their Fermi-
Dirac distribution at zero temperature. The initial state is thus
composed by the product of the independent ground states of
the leads and the scatterer. The ground state in the noninteract-
ing leads is simply a free-electron state; however, interacting
leads can be considered as well and they can be initial-
ized through density matrix renormalization group (DMRG)
[46,47] calculations. DMRG can be adopted to initialize the
scatterer in its ground state as well. At time t > 0, the system
is quenched to a Hamiltonian with no bias, while the scat-
terer and the leads are coupled by the tunneling interaction
Hynn (We present a comparison with the p-quench protocol in
Appendix D).

Our aim is to tackle superconducting and blockaded de-
vices, with the possibility of describing the out-of-equilibrium

physics of setups with large voltage bias and sizable tunneling
interactions between the leads and the scatterer. In the follow-
ing, we discuss in detail the construction of our computational
basis, its consequences and the introduction of the charging
energy in a number nonconserving model.

The method is implemented by using [Tensor library [48].
The source code can be found in Ref. [49].

A. Energy basis

A well-known challenge for the simulations of the dy-
namics of out-of-equilibrium many-body systems with tensor
network techniques is the growth of their entanglement in time
[50]. To reduce the entanglement, Rams and Zwolak proposed
a basis which mixes an energy eigenbasis for the tight-binding
lead description and a real-space basis for the scatterer [22].
With such a choice, the entanglement is greatly reduced from
a linear to a logarithmic growth with time (see Appendix B
for more details).

In the following, we adopt this strategy and we use a
single-particle eigenbasis of Hie,gs for the leads, with MPS
sites ordered by increasing energy. The Wilson chain approach
allows us to get a higher resolution in energy close to the
Fermi level, thus in the energy window in which the dynamics
has major effects. Concerning the scatterer degrees of free-
dom, we may adopt different bases depending on the physical
system and we discuss the details of their choice in Sec. IV C.

In particular, for BCS Hamiltonians in the form of Eq. (2)
and charging energy (3), we represent the scatterer through
MPS sites associated with its Bogoliubov quasiparticles, and
we complete the system description by including an addi-
tional MPS site to account for the scatterer total charge (see
Sec. IV B). Figure 1(b) shows a schematic representation of
the MPS construction that relies on this energy basis, and the
initial occupation of the lead sites is based on their chemical
potential.

As a result of this construction, during the time-evolution
of the system we can identify three energy intervals: for en-
ergies considerably smaller than —V,,/2 the eigenstates of the
leads are approximately frozen in an occupied state, for ener-
gies larger than Vj,/2, the eigenstates of the leads are equally
frozen in the empty state; in the intermediate scattering range,
the states of the scatterer and the leads strongly interact and
develop nontrivial correlations.

We illustrate this behavior in Fig. 3 for a simple model of
a superconducting (SC) quantum dot with two quasiparticle
states and charging energy given by Eq. (3); the way of dealing
with the charging energy will be introduced later in Sec. IV B.
Inside the scattering range (yellow shading), we can clearly
observe the onset of resonances identified by the variation in
time of the occupation number of the two leads at energies
set by the energy differences among many-body states of the
scatterer. These are identified by the vertical dashed lines
in Figs. 3(a)-3(c) and such resonances are consistent with
the results of the standard rate equation approaches [1,2].
The initial lead distributions are taken at zero temperature
and the resulting width of the depletion/filling regions fol-
lowing the quench is set by the coupling strength ¢, between
the leads and the SC device. Physically, this corresponds to
a regime where the broadening of the device energy levels
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FIG. 3. Time evolution of SC quantum dots with two quasiparti-
cle states of energies &g = 0.02E¢ and &; = 0.6E,. The coupling with
the leads is 7, = 0.2E, and E,. = ty. [(a)—(c)] Occupation number (71, )
of the energy levels in the two leads as a function of their energy
€4, after a quench, once the NEQSS is reached (t ~ 20//z.). Ver-
tical dashed lines correspond to the resonances with the transitions
between different many-body states in the device. The panels refer to
induced charges n, = 0.4, 0.5, and 0.6. (d) Time dependence of the
occupation number close to a resonance for small bias V, = 0.1E,.
The color progression from light to dark indicates longer evolution
times; the data refer to t = [0, 20, 40, 60, 80] in units of 7/t.. Verti-
cal dashed lines highlight the resonance at gy = 0.02E,, while the
shaded areas indicate the scattering window given by the voltage
bias.

induced by the hybridization with the leads is larger than the
temperature.

The time evolution of the occupation numbers of the leads
eigenstates close to a resonance is summarized in Fig. 3(d);
as time increases (from lighter to darker colors), the leads are
progressively depleted/filled. The NEQSS we are interested
in survives as long as there is a sufficient difference between
the occupation numbers of the left and right leads.

In simulation efficiency, the advantage of adopting the
energy eigenbasis is two-fold: (i) Contrary to a real state
basis, most of the leads and device states are only marginally
involved in the time evolution, thus the entanglement growth
is limited to the scattering energy range, consistently with
Ref. [22]. (ii) This approach allows us to evaluate the conduc-
tance also for moderately large bias voltage, which is typically
a difficult task for a real space basis.

Notwithstanding that the coupling between the leads and
the scatterer becomes nonlocal in the energy basis, Hy,,, can
be expressed in terms of matrix product operators (MPOs)
of small bond dimensions [22] (in the implementation by
ITensor, the MPO can be generated by AutoMPO). As we will
discuss in the following, such MPO will also take into account
the nonlocal charging energy effects. As a consequence, the
dynamics of the system can be efficiently simulated by us-
ing TDVP [9,10]. In practice, we use TDVP with single-site
update together with Krylov subspace expansion [51]. The

subspace expansion is performed in advance of the TDVP
evolution at each time step.

We mention that for leads with local interaction (as in the
case of Luttinger liquids), the MPO bond dimension in the
energy basis typically grows proportional with the system size
[7]. In this case, the advantage of such a basis is reduced with
respect to the real-space choice, which, however, has been
proved efficient to simulate transport in systems with simple
scatterers [5,12-19,52].

We finally remark that our energy basis choice is opposite
and complementary with respect to several other techniques,
including both NRG, where typically one works in a basis
such that the Hamiltonian defines an effective 1D tight-
binding chain with local interactions only, and recent studies
of quench dynamics in Anderson impurity models [23,24],
where an alternative ordering of the MPS sites has been pro-
posed in a position basis, in order to alternate filled and empty
leads sites and simplify the description of particle-hole pairs.

B. Charging energy and superconducting scatterers

The BCS mean-field description of a superconducting sys-
tem does not preserve its particle number, but only its parity.
This implies that the charge N of the scatterer cannot be
simply deduced by considering the occupation of the sites of
its tensor network descriptigp; therefore, to account for the
charging energy interaction H.., the MPS construction must be
suitably extended. To this purpose, inspired by the approach
adopted in Ref. [25], we add an auxiliary bosonic site to our
tensor network representation of the system (we locate it at
the center of the whole MPS chain). This MPS site behaves
as a counter for the number of particles in the scatterer and it
is defined by a local Hilbert space spanned by the eigenstates
|N) of the scatterer charge N.

To keep the Hilbert space dimension of the auxiliary site
finite, we introduce a truncation parameter Ny, such that in
our simulations we consider only a set of 2Ny, + 1 orthog-
onal charge states |N) with N € [—Npnax, Nmax] (for n, taken
between —1 and 1, otherwise we can shift this range). The
operator N is diagonal in this basis and, in particular, describes
the charge variation of the scatterer around the reference value
N = 0, which corresponds to the ground state of the isolated
superconductor in absence of induced charge (n, = 0). Given
the charge truncation parameter Np,x, our tensor network de-
scription provides reliable results when the charging energy
E. is sufficiently large, such that the fluctuations of the charge
of the scatterer, determined by the coupling with the leads
(and, potentially, by additional Josephson terms) are much
smaller than Ny,.x. In our simulations, we verified indeed that
for strong charging energies, thus in the case of Coulomb
blockaded device, the population of states far from N ~ n, is
exponentially suppressed and at the cutoff +N,, it remains
below machine precision.

As a general rule, the introduction of such an auxiliary
degree of freedom must be accompanied with a physical con-
straint. Here, we impose that the parity (—1)" of the auxiliary
site needs to be the same as the parity of the occupation of the
scatterer sites. Namely, let us define the operator:

P = (—nVZadid, ®)
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For any physical state |1/,nys), the constraint

PlYphys) = [Wphys) 9)

must hold. Besides this physical requirement, we also observe
that the total number of particles,

Na=N+ ). Zc s (10)

a=L,R i=1

is a conserved quantity. Our MPS and MPO constructions
encode both the Z, constraint (9) and the global symmetry
associated to Eq. (10) through suitable quantum numbers in
its virtual indices. Due to the peculiarities of the conserved
operators P and Ny, the local symmetry properties of the
tensors associated with lead and scatterer sites are different. In
particular, the parity constraint affects only the auxiliary and
the scatterer sites, whereas the particle number conservation
affects only the auxiliary and the lead sites (see Appendix A
for more detail).

Based on this MPS construction, the charging energy
term H, can be included in a straightforward way in the
MPO description of the Hamiltonian, since it simply corre-
sponds to a diagonal operator acting locally on the auxiliary
site.

More care is needed instead in the definition of the tunnel-
ing operators from the leads to the scatterer, which must be
dressed with suitable operators acting on the auxiliary site. To
this purpose, we define the operators

Npax—1
> IN+D(N| and TT=(EHT  AD

N=—Nmax

vt =

which respectively raise and lower by 1 the scatterer charge
N; the tunneling Hamiltonian acquires the form:

Hum = —t[d]e, (St +d)\ 0 ST +He],  (12)

where the lead operators ¢ and the scatterer operators df
are taken in the real space basis. In the BdG basis which
will be introduced below, the creation and destruction oper-
ators must be rewritten as the proper linear combination of
eigenstates in the chosen representation. Independently from
the basis choice, Hmnn becomes a sum of nonlocal three-site
operators, acting simultaneously on one lead, the scatterer
and the auxiliary charge site. Despite the apparently com-
plicated structure, the whole Hamiltonian can be efficiently
represented by an MPO of bond dimension 10. The related
dynamics can thus be conveniently evaluated through a TDVP
approach.

C. Quasiparticle basis

__ Depending on the considered model and the corresponding
Hgys, we can apply different basis choices for the scatterer.
The simplest is a real-space basis, in which the scatterer sites
are kept together, ordered by their positions and located in
proximity of the zero-energy single-particle states of the leads.
This choice is convenient in the presence of local interactions
within the scatterer Hamiltonian Hys. Instead, when the only
interaction is provided by the charging energy H., and the
mean-field superconducting pairing is present [e.g., the SC

quantum dot model analyzed in Fig. 3 or the Kitaev chain
model described by Eq. (2)], the best option for the basis is
given by the quasiparticle energy eigenstates derived from the
quadratic Bogoliubov - de Gennes (BdG) formulation of the
corresponding Hamiltonians. Accordingly, to study such mod-
els, we developed a MPS description of the scatterer based on
the occupation number of the Bogoliubov eigenmodes $; that
diagonalize the BCS Hamiltonians ﬁsys. This choice greatly
speeds our simulations of the system dynamics because it
avoids the strong entanglement growth caused by the forma-
tion of Cooper pairs that characterizes the real-space basis.
In the single-particle energy eigenbasis, only the consider-
ably weaker entanglement between quasiparticles contributes
indeed to the entanglement entropy built during the time evo-
lution.
In this basis, the scatterer Hamiltonian reads

M
~ At n
Hsys = Zgjyj Vi—
Jj=1

M
Z(e,- + o). (13)
j=1

where ¢; and f/j are the quasiparticle energies and creation
operators, corresponding to the positive eigenenergies of the
BdG Hamiltonian. The first and the second term correspond to
the excited states and the ground state energies, respectively.
In this basis, the real-space operators d; acquire the form
di = Zj\;ll u;;y; + v;*j)?j*. We stress that although the com-
plete BAG Hamiltonian has 2M eigenstates, half of them with
positive energies and half of them with negative energies, the
M positive energy states are enough to form a complete set
due to particle-hole symmetry. Therefore the number of basis
states in the new basis remains unchanged. Furthermore, this
construction does not rely on any particular symmetry in the
quadratic Hamiltonian Hjy, such that we can easily introduce
local potentials, disorder or position-dependent tunneling and
coupling terms.

As discussed in the previous section, the first step in the
simulation of the time evolution of the system for the den-
sity quenches requires to determine the ground state of the
scatterer. Since Hgy and H. are completely decoupled in
our representation, this ground state is the tensor product of
two parts referring to the Bogoliubov quasiparticles and the
auxiliary charge site. Such tensor product can display either
even or odd fermionic parity and it respectively assumes the
form [ *)|N = 0) or [ 7)|N = 1), for ng € [0, 1]. These are
indeed the combinations that fulfill the physical constraint in
Eq. (9).

In the quasiparticle basis, |¥*) and |y ~) are simply the
vacuum state an/d\ the state |1, 0, 0, .. .), respectively; for gen-
eral bases and Hgys, |¥*) can be computed by DMRG. The
ground state is then determined as the state of lower total
energy including both the contributions of Hbyb and H,, and
it is adopted to initialize the time evolution.

To illustrate the efficiency of the quasiparticle basis, we
consider a Kitaev chain in the topological phase and compare
the convergences to a NEQSS under small voltage bias ob-
tained by using two different basis for the MPS construction:
the first corresponds to the free electron eigenbasis of the
kinetic term #,; only [see Eq. (2)]; in this case, the pairing term
is included in the MPO; the second corresponds instead to
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FIG. 4. Comparisons for quench dynamics between a free electron basis (dashed lines) and the Bogoliubov quasiparticle basis (solid lines).

The scatterer is a Kitaev chain with parameters E, = g, t, = 0.4E,, [,

—0.1E., A = 0.5E., t. = 0.2E., n, = 0.5, and V), = 0.1E,, the same

with Fig. 5. (a) Maximal entanglement entropy and (b) largest bond dimension reached in the time evolution. (c) Bond dimension on each
bond in the MPS. (d) CPU time for the whole simulations for different scatterer lengths. The inset is a zoom in of the solid curve.

the Bogoliubov quasiparticle basis, which already takes into
account the superconducting pairing. As shown in Fig. 4(a),
for the free electron basis, the entanglement entropies be-
come progressively larger for longer systems (dashed lines).
Instead, for the Bogoliubov quasiparticle basis, the entan-
glement entropies are basically independent on the system
length, and are smaller than the entropies in the free electron
basis. Surprisingly, the largest bond dimensions required by
the algorithm during the time evolution become smaller for
longer chains in both bases, as shown in Fig. 4(b). This can
be understood as an effect of the finite overlap acquired by
the Majorana edge-modes for short chains, which enhances
the entanglement. For all lengths, the largest bond dimensions
reached in the Bogoliubov basis are smaller than the bond
dimensions in the free electron basis. Another advantage of
using the quasiparticle basis can be seen in the bond dimen-
sion distribution on each bond in the MPS. As shown in
Fig. 4(c), the region of large bond dimension is broader in
the free electron basis than in the quasiparticle basis. This
is because under small voltage bias the transport is mainly
contributed by the Majorana bound state (MBS), which cor-
responds to a single site in the quasiparticle basis, whereas in
the free-electron basis, the MBS is an entangled state spread
through the whole scatterer region. Figure 4(d) shows the
comparison of CPU times. The Bogoliubov quasiparticle basis
is in general more efficient than the free electron basis, and the
advantage becomes stronger when the system length is larger.

The construction we presented can be extended, in full
generality, by considering any arbitrary quasiparticle basis
for the device, and considering a suitable tunneling matrix
between the leads and the scatterer. In particular, for the mod-
eling of the transport across specific nanostructures, one may
want to consider only a selected number of low-energy single-
particle eigenstates by including only the most relevant states
involved in the transport process, rather than starting from a
tight-binding microscopic model such as Eq. (2). This kind of
approximation has been successfully applied, for instance, to
study Coulomb blockaded transport within the framework of
rate equations [53,54]; our MPS representation can easily be
adapted to this approach and, together, they also provide a sys-
tematic way of improving the resulting conductance estimates
by increasing the number of low energy states included in the
scatterer description.

V. PHYSICAL EXAMPLES

In this section, we benchmark our method on two test sys-
tems: a p-wave SC quantum dot with two quasiparticle states
and a Kitaev chain. We will use the Kitaev chain to illustrate
the main features of our method as well as its limitations,
whereas the small Hilbert space dimension of the quantum dot
allows for faster simulations and an easier characterization of
the Coulomb blockaded structure.

In general, we simulate the nonequilibrium dynamics fol-
lowing a density quench. For any choice of n, and V}, the
system is initially prepared in the corresponding ground state
with no couplings between the leads and the device (f, = 0).
At t =0, we turn the tunnel coupling 7. on and quench the
voltage bias to zero; the transport properties of the system
are then estimated based on the NEQSS reached after the
initial transient time. Throughout all the simulations, the main
observable we measure is the current flowing from one lead
to the other as a function of the voltage bias V,, and the
induced charge n,. The current is measured on both edges of
the central device, in the first links entirely in the leads [[ = 1
in Eq. (7)], to facilitate comparison between data associated
to different couplings between the leads and the scatterer or
hopping decay length in the leads. Since we always consider
superconducting models and symmetric voltage drops, we
assume that the current I1(V}, n,) is an odd function of the
voltage bias, hence we perform all simulations for V} > 0,
corresponding to a particle current flowing from left to right.
After the current has converged to the stationary value, we
divide each data set in several batches from which we compute
its average value and standard deviation. From the current,
we compute the differential conductance G = dI/dV}, using
a fourth-order discrete derivative method. Other meaningful
observables we can extract are the charge on the SC island
and the entanglement entropy on each link, which is naturally
obtained during the singular value decomposition (SVD) per-
formed at each step of the time evolution.

To give an example of the behavior of these quantities in
the quench protocol, we report in Fig. 5 the results for a topo-
logical Kitaev chain of M = 40 sites at the charge degeneracy
point n, = 0.5 and a small voltage bias Vj, = 0.1E,. Panel
(a) reports the postquench time dependence of the current at
the left and right edges of the scatterer; its behavior is very
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FIG. 5. (a) Evolution in time of the left and right currents (I,
and Ig, respectively) after the density quench. The shaded area cor-
responds to the interval where we average the current to extract its
steady-state value. The inset shows the change in time of the charge
of the SC island, both as the average particle number in the auxil-
iary site (dashed line) and as the integral of the current difference
between the left and right contact (solid line). (b) Entanglement
entropy at each bond of the MPS chain. The two vertical dashed
lines indicate the region where the excited quasiparticle states of
the Kitaev chain are located, while the auxiliary charge site and the
Majorana modes lies at zero energy, where most of the entanglement
is concentrated. The parameters in the Kitaev chains are E. = to,
t, =04E., u, = —0.1E., A = 0.5E,, and r. = 0.2E.. The current is
computed in proximity of the zero-bias peak at the charge degeneracy
point n, = 0.5and V,, = 0.1E..

similar to that shown in the noninteracting case, illustrated in
Fig. 2, suggesting that the MPS simulation is capturing cor-
rectly the transport phenomenon. The shaded area highlights
the NEQSS regime from which we extract the expectation
value of the current. To compute the error, we use a standard
binning technique: we divide the interval in several “batches”
(or bins), each with 10-20 data points, and extract the mean
and the variance of the current in each of these. Then, we
average the current again and propagate the error to extract
the variance of the final result. The inset shows the corre-
sponding behavior of the charge accumulated on the device,
comparing the difference between the ingoing and outgoing
currents and the variation of the occupation number of the
auxiliary charge site. Their agreement is a good sanity check
to verify that the simulation is physically meaningful and the

stationary value (N() — (N(0)) ~ 0.5 is correctly reached.
The system is initially prepared in the BCS ground state with
no quasiparticle excitation ((N (0)) = 0) which is degenerate
with the state with the MBS occupied (since we are deep in the
topological phase); after the quench, the system approaches
a NEQSS characterized by an equal superposition of the two
degenerate many-body states, hence the increase of the charge
(in Appendix D we present a comparison of this transient
dynamics with the p-quench protocol). Figure 5(b) shows the
spread of the entanglement in the energy-ordered MPS chain:
thanks to the basis choice, the entanglement is confined to
low energy states. In particular, states of the Kitaev chain
above the energy gap—Ilocated in the region between the two
dashed vertical lines—remain almost uncorrelated with the
rest of the system, signaling that transport is mediated mainly
by the Majorana modes. This situation represents the ideal
case of application of our method: when only a few scatterer
states are involved in the transport process, while most remain
untouched by the dynamics, the convergence of the simulation
towards a NEQSS is robust and it is not limited by the system
size.

A. SC quantum dot

A clear example of the physical results that can be ex-
plored by our approach is provided by a floating p-wave
superconducting two-level system, one of the simplest SC
model that displays Coulomb blockaded transport. Its small
size allows for fast and accurate simulations over a wide bias
range, making it easy to characterize the Coulomb blockaded
differential conductance in the whole ng-V;, plane. Indeed, the
limited growth of the entanglement in this model yields that
there is no need of fine tuning the simulation parameters (as
the duration of the TDVP time steps or the decay length &) to
ensure the convergence to a NEQSS.

This system is represented by the Hamiltonian:

Hys = e0Pg 9o + €19, 71, (14)

where 7, are the destruction operators of the quasiparticle
levels.! Although simple, this toy model can be used as an
approximation for a hybrid semiconductor/superconductor
nanowire with strong spin-orbit coupling to allow for the
emergence of an effective p-wave SC pairing (see, for in-
stance, Refs. [53,54]): in this case, the lowest energy level
&o represents a nondegenerate subgap state (Andreev or
Majorana bound state), whereas the eigenstate at & ~ A
constitutes an effective representation of all the quasiparticle
states above the SC gap. To reconstruct the Coulomb blockade
diamonds, we perform the quench simulations of a grid of
points in the n,-V, plane, with a denser sampling close to
the zero-bias peak, and compute the time-dependent current
averaged over the left and right contacts. Then, we follow the
procedure described at the beginning of Sec. V to extract the
differential conductance.

Our results show that the MPS + TDVP simulation allows
to capture all the expected perturbative transport features of

'On a practical level, the SC quantum dot is described as a very
short Kitaev chain (2) with M = 2 sites only.
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FIG. 6. (a) Differential conductance close to a charge degeneracy point in the n,-V;, plane, for a two level SC systems with gy = 0.02E,,
&1 = 0.6E,, and f. = 0.2E,. Transport is dominated by the sequential tunneling resonances (black dashed lines), corresponding to V,,/2 =
£[E.(1 — 2n,) + &]. (b) Differential conductance in log-scale, illustrating the cotunneling step in the odd Coulomb valley that arises at
Vi ~ £(&1 — &) (green dashed line). Also the transitions involving excited states are more visible: V;,/2 = [E.(1 — 2n,) + &;] (black dashed
line) and V;,/2 = [E.(2n, — 1) + &,] (orange dashed line). (c) Average charge in the NEQSS of the SC quantum dot, for positive bias. Notice
how the sequential tunneling resonances are reflected in the structure of (ﬁ )

these SC blockaded systems, including both sequential tunnel-
ing resonances and inelastic cotunelling effects at finite bias.
In particular, Fig. 6(a) illustrates the differential conductance
in the n,-V, plane for a quantum dot with gy = 0.02E, and
&1 = 0.6E,. The charging energy is the dominant energy scale,
alongside the “bare” hopping amplitude in the leads t) = E,,
while the tunnel coupling between the leads and the system is
t. = 0.2E..

The first feature emerging in the differential conductance
is the appearance of resonances caused by the incoherent se-
quential tunneling mediated by the low energy state &y. These
bright conductance resonances are clearly visible [indicated
by black dashed lines in Fig. 6(a) and appear when the volt-
age bias matches the energy difference between the ground
states in the even and odd sectors V;,/2 = £E (1 — 2n,) + &o.
Sequential tunneling is indeed the main transport mecha-
nism emerging in the perturbative rate equation approaches
and the related conductance peaks are commonly observed
in superconducting blockaded devices; see, for instance, the
experimental data referring to SC islands in nanowires in
Refs. [53-56] and the theoretical analysis in [36,57].

The sequential tunneling mediated by the state &y is not the
only perturbative feature that characterizes the intermediate
t. regime we are exploring. In Fig. 6(b), we report the same
data in the logarithmic scale, where a richer structure emerges
more clearly. One can indeed observe the fainter resonances
corresponding to sequential tunneling processes involving the
high-energy quasiparticle level &; (orange and black dashed
lines).

Interestingly, besides these sequential tunneling features,
which correspond to first-order phenomena in the tunnel cou-
pling z., we can clearly spot cotunelling effects, related instead
to second-order phenomena in #.. The main cotunelling fea-
ture is the appearance of an even-odd effect that distinguishes
Coulomb diamonds with different parities of the particle num-
ber N [36,54]. In particular, the finite-bias conductance in
the Coulomb valleys with odd particle number [n, > 0.5 in
Fig. 6(b)] displays an inelastic cotunneling step visible for
V, ~ €1 —&o (green dashed line). The lack of appreciable
cotunneling in the even valley is due to the destructive in-

terference between the possible cotunneling paths when the
ground state has even parity, while the interference becomes
constructive in the odd valley. Indeed, with our method we
simulate the coherent evolution of a closed quantum systems,
where interference effects can play a dominant role. In their
absence, cotunneling steps would appear also in the even
valley; in particular, when the lowest quasiparticle state has
an energy &9 < E;, Agc, the conductance predicted by rate
equations in the even and the odd valley would be almost
identical.

Finally, in Fig. 6(c), we report the average occupation
number (N} of the auxiliary site that describes the total charge
of the device. In the simulation we set the charge truncation
at Npax = 5. This truncation has very little effect on the sim-
ulations since in the steady state the average charge acquires
values between 0 and 1, for n, € [0, 1), while the occupation
of the states at the cutoff N = Nmax lies below numerical
precision. From the figure, it is clear that, when transport is
suppressed, the SC island has a well defined integer charge
determined by n, [blue and yellow areas in Fig. 6(c)]. When
transport is present, instead, the Qevice is in a mixed state
resulting in an average charge (N) ~ 0.5, with a series of
plateaus delimited by the sequential tunneling resonances.

Despite the fact that both sequential tunneling and inelas-
tic cotunneling features are evident in our simulations, we
cannot expect a quantitative agreement on the amplitude of
the differential conductance peaks between our nonperturba-
tive simulations and the perturbative rate equation techniques.
There are indeed two aspects to be emphasized. First, our
MPS calculations simulate the unitary evolution of a closed
system at zero temperature, whereas rate equations only
describe the noncoherent evolution of the populations of
the scatterer many-body states. Therefore the MPS 4+ TDVP
method captures interference effects between transport chan-
nels in higher-order processes such as cotunneling, as
mentioned before, while rate equations do not. Second, rate
equations are rigorously justified only when the temperature
is larger than the tunnel coupling #, and mainly describe
temperature-broadened conductance peaks (see Appendix C).
In this respect, the tunneling strength we used for most of
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the simulations, #. = 0.2E,, is definitely beyond their range
of validity.

Finally, we remark that the MPS approach is able to capture
also nonperturbative effects. In this respect, we observe that a
faint zero-bias peak is visible in Fig. 6(b) for 0.5 < n, < 0.9,
thus in the odd diamond. Its appearance suggests the onset
of a weak nonperturbative Kondo-like effect which cannot be
captured by rate equations.

Therefore our technique provides a method which is com-
plementary to the standard rate equation approach: the MPS +
TDVP simulations allow for the investigation of transport in
the low-temperature and strong coupling regime, which is
typically hard to tackle with traditional techniques. For small
tunneling rates and higher temperatures, instead, transport
is dominated by perturbative phenomena which can be effi-
ciently captured by rate equations.

B. Coulomb blockaded Kitaev chain

We now analyze the quantum transport across a Kitaev
chain in the topological phase and characterize the zero-bias
peak of the differential conductance and its dependence on
the voltage bias at the charge degeneracy point. By simulat-
ing the dynamics of a chain with M = 40 sites, we show
that our method correctly captures the low-bias transport me-
diated by the Majorana modes. At small voltage bias we
observe nonperturbative effects such as the quantization of
the conductance at the charge degeneracy point n, = 0.5,
for symmetric left and right tunnel coupling z.. Moreover,
the analysis of the stationary current as a function of .
shows that we can investigate the dynamics of large sys-
tems in a strong coupling regime, beyond the validity of
both first-order rate equations and single resonant level [36]
approaches. To characterize the current dependence of the
voltage bias at n, = 0.5, we focus, instead, on a shorter chain;
even though we can study much longer gapped systems at
small biases, we chose M = 8 because the simulations with a
considerably larger number of quasiparticle states and large
biases are subject to a fast entanglement growth and their
correlations rapidly saturate the maximum bond dimension
we set.

The most characteristic feature of Coulomb blockaded
transport is the zero-bias peak that appears at the charge
degeneracy point. Its presence is easily understood by a first
order rate equation approach (see Appendix C): when the
energy of the BCS ground state with even fermionic parity—
i.e., no quasiparticle (QP)—matches the energy of the ground
state with odd parity—thus with the lowest lying QP state
occupied—electrons can tunnel into and out the SC device
without paying energy. In the presence of Majorana zero-
energy modes, however, this process results in a coherent
teleportation of electrons between the two leads mediated
by the MBS [58,59]. Therefore, in the limit of large energy
separation between the zero-energy MBS and the other QP
states, the zero-bias conductance peak can be estimated based
on a nonperturbative Breit-Wigner (BW) formula for resonant
tunneling mediated by the Majorana modes [36]. Indeed, if
we consider a single resonant fermionic level, the differential
conductance close to the charge degeneracy point n, = 0.5 is

approximated by

e FLFR
h (© — Ec(1 = 2ny))* + (T + [g)? /4

5]

Gpw (w) = (15)

where T'y =17, [uq|* /1o is the effective tunnel rate that takes
into account the local density of states v = (2mty)~' of the
leads with open boundary conditions at the Fermi energy and
the projection of the particle-like component of the resonant
level on the device edges, u,. @ is the energy at which the
conductance is probed. Gy neglects the transport effect of
QP states above the SC gap and results in the quantization
of the differential conductance peaks at zero bias (w = 0) for
symmetric rates I'y = I'y. From now on, we will focus on the
symmetric coupling and denote the effective tunneling rare
with T

From Eq. (15) it is straightforward to obtain the current
at finite voltage V.. By integrating the conductance between
w = —V,/2 and w = V,,/2, we obtain

Vi, —2E.(1 — an)>
2r
Vi + ZEZS — an))].

An important observation is that I sets both the amplitude of
the current and the width of the linear response regime where
the conductance is quantized at n, = 0.5.>

In the following, we compare our numerical results with
this BW theoretical prediction. In analogy with Egs. (15) and
(16), also the MPS simulations are not perturbative in the
tunnel coupling 7.; at the same time, they provide a more
complete description than the BW formula because they take
into account the presence of multiple energy levels above the
SC gap.

In Fig. 7(a), we show the current at small bias V;, = 0.1E,
for several values of 7. and compare our numerical results
with the values predicted by Eq. (16) (solid black lines). We
observe and excellent agreement between the two approaches
for small tunneling strengths while their discrepancy increases
as 7. becomes larger. Indeed, in the strong coupling regime, the
MPS simulations predict a larger current than the BW approx-
imation, in particular in the odd valley n, > 0.5. Indeed, the
population of quasiparticles above the superconducting gap
is no longer negligible for t, = 0.4E, = 0.8 Agc, where Agc
is the energy separation between the Majorana bound states
and the higher excited states. Hence, the single resonant level
approximation behind Egs. (15) and (16) is no longer valid, as
more transport channels become available.

We further emphasize that V}, is too large to observe the
quantization of the conductance (for I'; = ') in the linear
response regime [ = %Vb, indicated by the horizontal dot-
dashed line in Fig. 7(a). To observe such quantization, it
is necessary to measure the current at smaller voltage bi-
ases, such that V, < T. In this regime, a fourth-order finite
differences approach to estimate G = dI/dV, gives results

1I(V)= F[arctan (

+ arctan ( (16)

2Linear response holds when the Taylor expansion of the arctan
functions can be trunctaed at linear order. For n, = 0.5, that requires
2 > V.
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FIG. 7. (a) Comparison between the steady state current obtained
with the MPS simulations and Eq. (16) (solid black lines) for several
values of the tunnel coupling z.. The current is computed at small
but finite bias V;, = 0.1E... The horizontal dot-dashed line indicates
the value of the current for a quantized conductance G = e?/h.
(b) Zero-bias conductance peak obtained with foruth-order method
with finite differences, extracted from current signals at V, = 0.02E,
and V, = 0.04E.. The solid black lines is the theoretical prediction
from Eq. (15). The other physical parameters are A = ¢, = 0.3E,,
s = —0.1E,, E. = tg, and M = 40.

in agreement with the theoretical prediction of Eq. (15), as
show in Fig. 7(b): at ng = 0.5, the conductance is quantized
G = €% /h within one errorbar. The numerical data show also
a slight asymmetry of the conductance peak, as already ob-
served in Fig. 7(a). This effect seems analogous to the case
of the superconducting quantum dot in Fig. 6(b), and can
be qualitatively understood based on different amplitudes of
cotunneling processes in the even and odd Coulomb valleys.
By recovering the quantization of the zero-bias peak, we
have shown that our numerical method can describe non-
perturbative effects as well as transport in a strong coupling
regime, going beyond single-level approximation for resonant
tunneling. A further facet of the complementarity between our
zero-temperature simulations and the perturbative rate equa-
tion calculations is provided by the behavior of the tails of the
peak as a function of the induced charge: rate equations result
in a temperature-broadening of the conductance peak with ex-
ponentially suppressed tails, whereas our approach describes
a broadening induced by the tunneling amplitude, which is
instead characterized by a power law decay far from n, = 0.5.

0.06 1
%
0.05 - i\‘i;xé
\:i
0.041 ¥
<[
120031
0.02
—— BW th.
0.01 1 ---- rate eq.
-4- MPS
0.00 +
0.0 0.5 1.0 15

Vo/ Ee

FIG. 8. Current vs voltage bias in correspondence of the induced
charge resonance n, = 0.5 for a Kitaev chain with M = 8 sites;
the vertical dashed line indicates the energy corresponding to the
superconducting gap. The overall scale of the rate equation current
(dashed red line) has been arbitrary chosen to approximately match
that of the TDVP algorithm. The solid black line is Eq. (16). The inset
shows the maximum entanglement entropy in the chain reached as a
function of V;. Again, the vertical dashed line indicates the position
of the SC gap, where we observe a fast increase of the entanglement.
For the largest two values of V,, considered, the estimate of Sy is no
longer reliable because the simulation saturates the maximum bond
dimension allowed and the error introduced in the SVD truncation
becomes larger than the chosen cutoff of 1077,

The next step towards the full characterization of the con-
ductance in the n,-Vj, plane is the analysis of the current
with respect to the voltage bias. As mentioned above, here
we restrict our simulations to M = 8 sites in the scatter to
reduce the entanglement growth when V}, becomes larger than
the superconducting gap. Our results are reported in Fig. 8,
where we plot the current flowing through the Kitaev chain
as a function of the voltage difference between the leads,
in correspondence to the resonance n, = 0.5. Since we ex-
pect single-electron processes to be dominant at the charge
degeneracy point, we compare our data with the prediction
of first order rate equations (dashed red line), which indeed
give a qualitative agreement. However, it must be noticed
that both the overall amplitude of the current obtained with
rate equations, and the temperature used in the corresponding
Fermi factors have been arbitrary set to approximately match
the profile given by the MPS data (see Appendix C for more
detail). We also consider the comparison with the BW approx-
imation in Eq. (16) (solid black line).

As expected, the current increases sharply at small values
of V, (the zero-bias peak) and then saturates in the region
where transport is mostly mediated by the Majorana edge
modes while the voltage is too small to excite states above
the SC gap, indicated by the vertical dashed line. In this
regime, the Eq. (16) is a valid approximation for finite bias
transport, as observed from its good agreement with the MPS
simulations. When V,, > Agc ~ 0.5E,, the current decreases
because transport across excited states is less efficient with
respect to the Majorana modes, due to the reduced projection
on the device edges. From the point of view the differential
conductance, this appears as a region with negative G, as
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observed in several experiments on SC devices with subgap
states [53,56]. In this regime, multiple quasiparticle states
are involved in transport processes and, therefore, the BW
approximation is no longer valid, while the first-order rate
equations method allows us to capture the qualitative features
of the I-V curve.

An important effect of the excited states is the abrupt in-
crease of the entanglement entropy at the central bond when
V, exceeds the SC gap, as reported in the inset of Fig. 8. Indeed
when the voltage is large enough for multiple quasiparticle
states to become populated, the entanglement grows accord-
ingly. When the bias is smaller than ~0.7E,, the simulations
are accurate (truncation error below 1077). When the bias
becomes large, V,/2 2 0.7E., the system progressively satu-
rates the maximum entanglement allowed by our simulations,
which is set by the maximal bond dimension ym.,x = 2500,
and the errors of our simulations are no longer under control.

This constitutes the principal limitation of our method:
when a continuous spectrum or a large number of ex-
cited states are within the bias energy window, thus having
significant contribution to the transport of electrons, the en-
tanglement will grow rapidly with time, hence requiring more
computational resources for the accurate simulation of the
dynamics, in line with general limitations of tensor network
methods for studying quantum quenches. There are several
strategies to fine tune the simulations parameter and mitigate
these limitations, such as choosing optimal time step durations
and adjusting the localization length & in the leads. The best
choice depends, however, on the physical parameters of the
model and needs to be set accordingly.

The entanglement entropy at each link is therefore a useful
quantity to monitor because it determines whether the sim-
ulation succeeds or not: if the entanglement entropy grows
too much, so does the bond dimension x needed to describe
faithfully the quench dynamics. x, in turn, is constrained by
the memory and computational time allocated for the calcula-
tion. On a practical level, we need to ensure that the maximum
bond dimension xm.x allowed is large enough to observe the
emergence of a stationary value for the current.

Figure 9(a) shows the increase in time of the entangle-
ment entropy Sep corresponding to partitions of the tensor
network at three different positions and for several lengths
of the scatterer (color-coded). Solid lines correspond to a cut
at the position of the charge site, which lies at the center of
the MPS. Dashed and dot-dashed lines instead correspond to
cuts in the middle of the leads bandwidth, at negative and
positive energies, respectively. The simulations are performed
at the charge degeneracy point n, = 0.5 with a small bias
Vi, = 0.1E,. Notice that the entanglement entropy at the aux-
iliary charge site position, where the entropy is the largest,
is almost independent from the length of the scattering re-
gion M. Hence, in the regime where a single state mediates
transport, the efficiency and speed of the simulations depend
very weakly on the number of single-particle states in the SC
device, allowing for studying relatively large systems.

In Fig. 9(b), we plot the entanglement entropy profile as
a function of the energy of the MPS sites, at the end of the
time evolution. Different curves refer to different values of
Vj, corresponding to the data presented in Fig. 8, where larger
voltage biases induce larger entanglement and also a wider

@ 00
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1.50
1.251
0.75 1
0.50 -
0.25 1
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FIG. 9. (a) increase of S, in time for cuts in three different po-
sitions: auxiliary charge site (solid lines), right left lead bulk (dashed
lines), and right lead bulk (dot-dashed lines). The color encodes the
size of the scatterer; Notice that the curves corresponding to the
entropy at the charge site (solid curves) are perfectly superimposed
for M > 2, indicating that S, is almost independent from M as
long as transport is dominated by a single channel. The voltage bias is
Vi, = 0.1E.. (b) entropy profile of S.,, at the end of the time evolution,
for different values of the V,, € [0.1E,, 1.6E.]. Larger entropy is as-
sociated to larger biases. The vertical dashed lines indicate the energy
range of the possible manybody transitions of the scatterer, where the
total charge changes by 1. This interval is centered around O because
the data are taken at the charge degeneracy point n, = 0.5. The other
parameters in the Kitaev chains are A =¢, = 0.3E,, u, = —0.1E,,
and 7. = 0.2E,.

region of the MPS where S, grows. Notice, however, that the
entanglement is mostly restricted to energies limited by the
bandwidth of the scattering device, indicated by the vertical
dashed lines.

These data make clear the advantage deriving from our ba-
sis choice: the entanglement grows logarithmically in time and
is concentrated in an energy window limited by the minimum
between V,, and the bandwidth of the scatterer. The ‘“bulk”
of the leads, meaning states far in energy from the Fermi
level, almost remains in its initial product state, as seen also
from Fig. 3. The logarithmic growth of the entanglement en-
tropy implies that the bond dimension grows linearly in time,
making the simulation efficient, since the resources required
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increase at most as a power law of the system size and the
total evolution time. However, the situation is not always so
favorable: in general, the larger the current, the faster the
entanglement and bond dimension grow.

VI. CONCLUSIONS

In this paper, we illustrated an efficient method to simulate
transport phenomena in Coulomb blockaded one-dimensional
superconducting systems, which encompass several funda-
mental building blocks for the realization of both SC qubits
and many proposed platform for topologically protected
qubits. We extract their differential conductance from the
quasi-steady state current arising after a quantum quench in
which we bring the system out of equilibrium by imposing a
finite voltage bias between two leads connected to it.

Our method allows for exploring the system behavior in the
strong coupling regime between the leads and the interacting
SC device and for describing results beyond perturbative ap-
proaches (for instance, standard rate equation approaches). It
is therefore suited for the study of nonperturbative phenomena
such as Kondo or topological Kondo effects.

We simulate the real-time system dynamics within the
MPS framework, where each site represent a single-particle
energy eigenstate and the charging energy is encoded in an
auxiliary site describing the total charge of the scattering re-
gion. In this basis, the system entanglement remains localized
[22] an we are able to compute efficiently the time evolution
for long times.

In this paper, we focused on simple p-wave superconduct-
ing spinless models and noninteracting leads; in particular,
we analyzed two physical examples: a superconducting dot
with two quasiparticle states and a blockaded Kitaev chain.
Concerning the former, our method reproduces the pre-
dicted sequential tunneling and cotunneling signatures and
accounts for the interference between different coherent trans-
port processes. Concerning the latter, our method recovers the
quantization of the conductance peak predicted in the case
of symmetric left and right tunneling rates for low 7., and
evidences a typical asymmetry of the zero-bias peak caused by
the quasiparticle states above the superconducting gap in the
strong coupling regime. Therefore it gives a more complete
description of the transport process than the resonant level
approximation and provides a complementary approach to
perturbative rate equations.

Our method can be easily extended to take into account
more leads, additional interactions, the presence of disorder or
smooth potential profiles in the scatterer and spinful systems.
A weak Josephson coupling between the superconducting
scatterer and grounded superconductors can also be efficiently
described, as well as interacting or more complex leads.
Furthermore, several recent works applied MPS methods to
describe the time evolution after a quantum quench and the
transport in interacting systems with leads of infinite length
[52,60-62]. Such techniques can be integrated in our approach
and can provide a method, alternative to the Wilson chain
description, to mitigate finite size effects.

Our results to estimate the system conductance can also
be integrated with recently developed techniques to simulate
a dissipative time evolution of the system based on suitable

Lindblad operators [6,63,64]. Indeed, our simulations focused
on the unitary evolution of closed systems. However, the de-
scription we have chosen for the leads degrees of freedom
can be extended to account for the coupling with external
electronic reservoirs, as well as other thermodynamic baths
imposing a dissipative dynamics to the system. Furthermore,
the introduction of suitably tailored dissipative terms that
decrease the weight of nonlocal operators in the MPS time
evolution has been proven beneficial to reduce the increase
of the system entanglement in diffusive systems [65]; such
technique could be implemented also in our TDVP evolution,
thus allowing for longer simulation times.

Adding the possibility of simulating the quench dynamics
at finite temperature is also a necessary step to observe some
of the scaling properties associated to topological [66—74] or
charge Kondo effects [75-77]. A possible route to include a
finite temperature within the tensor network framework, is to
promote the system wavefunction to a density matrix, encoded
in a matrix product operator (MPO), which can describe both
a pure and an open mixed state [78,79]. Alternatively, one can
keep a pure state description of the system, thus maintaining
its MPS structure, by exploiting a thermofield transforma-
tion [21,24,80], where the thermal distribution in the leads is
reached by tracing out a set of auxiliary sites.
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APPENDIX A: DETAILS ON THE MPS CONSTRUCTION

1. Josephson energy and inclusion of a superconducting lead

In the main text, we discussed systems in which the scat-
terer exchanges particles with the leads only. The introduction
of the auxiliary site, however, allows us to to extend further
our model in order to effectively account for an additional
SC lead, which exchanges Cooper pairs with the SC scatterer.
This is possible by replacing the Hamiltonian H. with a more
general form:

Hscvox = E«(N —n? —EJIETY + (7). (A

This constitutes the Hamiltonian of a Cooper pair box [81],
and the energy scale E; represents its Josephson energy. The
second term in Eq. (A1) varies the number of electrons in the
scatterer by £2 [see Eq. (11)] and indeed represents a process
in which Cooper pairs tunnel in and out of the system. Given
the limitation provided by the truncation Ny, the simulation
of the system is reliable only when Ej is sufficiently smaller
than E,, such that, in practice, the states | = Np,x) display a
negligible population. Therefore the extension of the original
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FIG. 10. (a) The quantum numbers p;, and n, refer to the
fermionic parity of the scatterer and the total particle number re-
spectively. The scheme indicates for which kind of sites in the MPS
these quantum numbers are defined. (b) The Z, parity constraint
(9) is imposed by building tensors fulfilling the depicted rules. The
lead tensors connect virtual states with the same parity. The auxiliary
and scatterer sites, instead, modify the fermionic parity of the virtual
states accordingly to the physical degree of freedom, such that they
are Z, invariant. (c) The global U(1) gauge invariance is enforced
by assigning to each virtual link in the MPS chain a virtual charge
n,. For the auxiliary and lead sites, the tensors increase the virtual
charge based on the charge of the physical state n. The scatterer
sites, instead, leave the virtual charge unaltered.

model provided by Eq. (A1) is suitable to describe scatterers
which are typically in a Coulomb-dominated regime, as in the
case of SC charge qubits. The opposite transmon limit £; >
E., instead, cannot bg satisfaggorily explored.

When replacing H, with Hscpox, the conservation of total
particle numbers (in the leads and the scatterer) is reduced
to the conservation of parity, which may assume both values
depending on the initial lead states.

By including the Josephson energy, the model becomes
effectively a three-terminal device, able to simulate the inter-
acting Coulomb blockaded regime of systems analogous to
the ones studied in Refs. [82,83]. We also observe that, by
switching off the tunnel coupling with one lead, it is possible
to study two-terminal normal-superconducting junctions me-
diated by a blockaded scatterer described by Hgys.

2. Symmetry

Our MPS construction, represented in Fig. 1, exactly im-
plements the parity constraint given by Eqs. (8) and (9) and
the U(1) global symmetry associated to the conservation of
the charge in Eq. (10). These are two independent symmetry
conditions which the MPS construction must fulfill, and we
emphasize that the first involve only the physical degrees of
freedom of the scatterer and the auxiliary state, whereas the
second involves only the physical degrees of freedom of the
leads and the auxiliary site. The tensors entering the descrip-
tion of the system must accordingly fulfill the Z, and U(1)
charge conservation rules represented in Fig. 10, which in-

volve both the physical and virtual indices (see Refs. [8,84,85]
for general overviews of symmetries in tensor networks).
These requirements are set by assigning two independent
quantum numbers, which we label by p; and n, and corre-
spond to the scatterer fermionic parity and the total particle
number, to all the states in each (virtual or physical) bond of
the MPS.

Figure 10(a) summarizes which kind of physical sites con-
tribute to the quantum numbers p; and n, of the MPS tensors.
The quantum number p; = 0, 1 concerns the Z, fermionic
parity of the scatterer degrees of freedom. In particular, p; on
the bond / refers to the fermionic parity accumulated in the
scatterer physical sites (including the auxiliary charge site) on
the MPS sites before the bond /. In Fig. 10(b), pls/ " labels left
and right virtual states of the tensors respectively; pl refers
instead to the fermionic parity of the physical sites of the
scatterer. In order for the constraint (9) to be satisfied, the
lead tensors must connect left and right virtual states with
the same parity p;, irrespective of the lead physical degree of
freedom [since Eq. (9) does not involve them]; the auxiliary
and scatterer site tensors, instead, must connect virtual left
and right states with different parity whenever the physical
fermionic parity of the site is odd, and leave the virtual parity
ps invariant when the physical parity is even. This corresponds
to the conservation of the fermionic parity p, depicted in
Fig. 10(b). The constraint (9) is enforced by a suitable choice
of the tensor boundary conditions.

Concerning the global U(1) charge conservation, instead,
the physical degrees of freedom involved are the ones of
the leads and the auxiliary site. Such charge conservation is
imposed by assigning a further charge quantum number 7, to
all states in the MPS bonds. In this case, the lead and auxiliary
site tensors must suitably increase this virtual charge from the
left to the right tensor link based on the charge of the physical
site. The scatterer site tensors, instead, connect virtual states
with the same virtual charge. See Fig. 10(c).

We emphasize that p; must not be confused with the par-
ity of n,. Clearly, since Eq. (10) sets a U(1) symmetry of
the system, it also enforces an additional parity conserva-
tion for the lead and auxiliary site degree of freedom, which
corresponds the Z, symmetry that characterizes the system
when introducing the additional Josephson coupling E; in
Eq. (Al). In this case, the constraints in Fig. 10(c) are re-
laxed to analogous relations involving only the new parity
q: = n, mod 2.

APPENDIX B: ENERGY BASIS AND
ENTANGLEMENT GROWTH

In this section, we briefly review the entanglement growth
with real-time dynamics in the real-space and the energy
bases.

The growth of entanglement is the main challenge in the
MPS simulations, which typically prevents the possibility of
reaching an accurate description of the system dynamics for
long times [50]. This is clearly a major limitation, since the
estimate of the conductance of a given scatterer is based on
the NEQSS behavior of the current. When considering an
MPS based on a real space basis, the entanglement growth
is captured by the entanglement entropy S associated to any
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partition that separates the degrees of freedom in different
leads. Each particle coming from the leads is partially re-
flected and partially transmitted in a coherent way by the
scatterer, generating entangled particle-hole pairs [22,23].
This results in a linear increment of § o Vjt in time and volt-
age bias, which is consistent with the Lieb-Robinson picture
of the dynamics of the system after a quench: the NEQSS ap-
pearing inside its space-time cone is constituted by a number
of particle-hole pairs that increases linearly in time.

To mitigate the restrictions imposed by this growth of the
entanglement, Rams and Zwolak proposed to adopt a different
basis [22]: when the leads are modeled based on an ordered
single-particle energy eigenbasis, only states lying in an in-
termediate energy window defined by the voltage bias are
affected in a major way by the time evolution. By modeling a
system with a mixed eigenbasis—an energy eigenbasis for the
leads and a spacial basis for the scatterer—the entanglement
entropy typically displays only a logarithmic growth in time
[22], thus allowing for simulations of a considerably longer
time evolution (see also Ref. [86]).

APPENDIX C: RATE EQUATION APPROACH

To compare our numerical results with an analytical ap-
proach, we use a standard rate equation approach, where we
consider a classical probability distribution for the occupation
numbers of the quasiparticle (QP) states in the scatterer and
transition rates given by Fermi golden rule.

First, let us rewrite the Hamiltonians of the quantum dot:

N
Hsys = Z En?:)’)n + 50 + EC(N - ng)za (Cl)

n=I

where & is the energy of the BdG vacuum and §, is the
destruction operator of the quasiparticle state with positive
energy €.

Regarding the leads, we make a wide-band approximation,
with a linear dispersion and a constant density of states

Ifl\leads = Z Zga,ké;kéa,w (CZ)

a=R,L k

where we assume that the eigenstates are plane waves with
momentum quantization k = 2 j, with j integer. To link
this approximation with the original tight binding descrip-
tion we fix &4 = vk — o = 218ka — o, being 2i8a/h
the lead Fermi velocity at half filling and a the lattice
spacing.

Finally, the tunneling Hamiltonian between lead « and the
SC device reads

I—/I\t(lxmn = _tc,a Z[(j}nlu:(xa) + ?llvn(xa))ék(ba,k + HC]
k,n

(C3)
Here, u)(xy) and v,(x,) are the particle and hole weights,
respectively, of the n — th eigenstate on the first (x, = 1) or
last (xg = N) site of the chain, while ¢, ; are the plane waves
states of the leads.
Since we are interested in a strong Coulomb blockaded
regime, we restrict the scatterer Hilbert space considering only
states with total charge N = 0, 2, with no QP excitation, and

N =1, with a single QP state occupied. We will denote with
Py, P>, and P, the populations of such states.

Sequential tunneling events connect states with different
quasiparticle occupation. hence we need to compute the four
transition rates I'g,, 'Y, I'5,, I';, for both contacts with the
external leads. Following Fermi golden rules, we can compute
these rates as

2 ~
Lir = 7|(f|Htunn|l>| w;d(E; — Epr), (C4)

where |i) and |f) are the initial and final states and w; the
thermal weight of the initial states. Standard calculations lead
to

2

)
U5 = g un ) lPf (Ao + € = pta),

2

Tl 2
__0|Mn(xot)| [1 - f(AEIO + € — Ma)]y

Do =7~

2

Tl
ry, = Z;—’wn(xa)ﬂl — f(AEy — €, — pa)l,
0

2

M = 7o, ()P f(AEn = 6 = i), (€9
AEy ' 1s the charging energy difference between two states
with different total charge and f(-) is the Fermi distribution.
Once the rates are known, we can derive the nonequilibrium
steady state by looking for the kernel of the transition matrix
obtained from the rates in Eq. (C5).

An important thing to notice is the asymmetry between the
transition 0 <> n and 2 < n. Indeed, in the first, a particle
is directly transferred from the leads to a quasiparticle state,
or vice-versa, while, in the second, the process involves the
destruction (creation) of a Cooper pair. If the particle and
hole weights happen to be very different, for instance, in a
Kitaev chain in the topologically trivial phase, this asymmetry
is reflected in the Coulomb diamonds. Indeed, the current
associated to direct tunneling of an electron in a quasipar-
ticle state would be much larger than the current associated
to process involving a destruction or creation of a Cooper
pair.

Once the rates are computed, the stationary probability
distribution for the states of the SC island P® are found by
solving the linear system of equations

Y TwP — TPy =0,

1—‘Onp(‘)e“1 + FZnPZeq — (Tno + FnZ)P:q =0, (C6)
> TP = TyP =0,

where I'yg = 'k + I'% | and similarly for the other rates. No-
tice that Eq. (C6) only considers states with one or no QP state
occupied, which is valid only at small voltage bias. In order to
obtain a more accurate description and take into account also
transitions between excited states, situations in which tow or
more quasiparticle are present should also be considered. This
has been done, for instance, to obtain all the main sequential
tunneling resonances appearing as diagonal lines in Fig. 6(b).
Such extensions of the considered many-states involved in the
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transport, however, rapidly increase the dimension and the
complexity of the transfer matrix describing the incoherent
evolution of the scatterer, making it intractable for systems
with more than a few sites, despite they do not complicate the
calculation of the rates themselves.

Combining the definition of the transition rates in Eq. (C5)
and the associated probability distribution from Eq. (C6), the
sequential tunneling contribution to the current from lead « to
the device reads

Ia =e Z ( 52 - gO)P:q + anpgq - anP;q’ (C7)
n

where we adopted the convention that an ingoing particle
current is positive. If the system has only two terminals,
I = —Ir using this convention. In the main text, we make
a different choice for the current sign: a positive (particle)
current flows from the left lead to the device and then to
the right lead, while a negative current flows in the opposite
direction. An important thing to notice about Eqs. (C6) and
(C7) is that P* is independent from the tunneling strength
t. between the leads and the SC island, while the current
inherits a global factor |¢.|?> from the rates I', which sets
the overall scaling of I, with z.. Moreover both P* and I,
require a finite temperature 7 to be well defined and to avoid
discontinuities in the rates and in the stationary probability
distribution due to sharp jumps in the Fermi factors at 7 = 0.
Hence, it is impossible to compare quantitatively the result
of the perturbative rate equations and our exact solution of
the unitary dynamics using tensor networks at zero temper-
ature. The former requires 7 > 0 and only describes a |z.|?
scaling of the current. Moreover the conductance resonances
are broadened only by the temperature and not by the fi-
nite coupling between the leads and the scatterer. Our MPS
approach, instead, works at 7 = 0 and predicts a coupling-
induced broadening of the conductance peaks as well as a
less trivial scaling of the current amplitude with 7.. Thus,
when comparing qualitatively the two approaches, it is nec-
essary to choose an appropriate scaling factor if one wishes
the current signals to have similar amplitudes, as we did in
Fig. 8.

APPENDIX D: n-QUENCH PROTOCOL

All the data presented in the main text are obtained follow-
ing the density quench protocol, where the system is prepared
at t = O with the scatterer uncoupled from the leads, initial-
ized with different Fermi energies, and then it is evolved by
turning 7. on and removing the chemical potential difference
at t > 0. In this way, the system starts from a product state
[Yo) = |¥L) @ |¥s) ® [vr), where L, S, and R refer to the
three regions, and a particle transmitted through the device
conserves both its energy and momentum.

The alternative approach is what we called the @ quench,
which consists in preparing the ground state of the leads
coupled to the interacting scattering region, using DMRG, but
with no voltage bias. Then, at t = 0, the chemical potential of
the two leads is shifted, such that u; — ug =V} and a current
starts flowing. In Fig. 11, we present the current following a
w quench for a topological Kitaev chain with M = 40 sites,

0.06 I
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FIG. 11. Evolution in time of the left and right currents (I, and I¢,
respectively) in the p-quench protocol. The inset shows the change
in time of the charge of the SC island, both as the average particle
number in the auxiliary site (dashed line) and as the integral of the
current difference between the left and right contact (solid line). The
parameters in the Kitaev chains are E. = ty, t, = 0.4E., A = 0.5E,,
us = —0.1E,, M = 40, and t, = 0.2E,, exactly the same with Fig. 5.
The hopping decay length in te leads is & = 40. The current is
computed in proximity of the zero-bias peak at the charge degeneracy
point n, = 0.5,V, = 0.1E..

analogously to Fig. 5. Comparing the two pictures, we clearly
see that the current in the wu quench displays an oscillatory
behavior, on top of the usual current noise, which is absent
in the density quench. These oscillation are an effect of con-
sidering finite leads and decrease by increasing their length £
or by reducing the hopping decay length &, as also observed
in Ref. [39]. However, this second method is suitable only for
very small bias, as short decay lengths are unsuited to simulate
the evolution with V}, > T".

Moreover, while for small V,, the two approaches are sub-
stantially equivalent, at large bias the u quench introduces a
nonphysical decrease of the current, resulting in a negative
differential conductance. This is an effect of considering leads
with a finite bandwidth: as V}, increase, the energy interval
where the bands of the two leads overlap becomes smaller and
smaller, as they are rigidly shifted by their chemical potential.
Hence, the number of states in the leads that can contribute
to transport decreases, leading to a suppression of the current
[5].

The w-quench protocol can, however, be more convenient
at small biases and close to a charge degeneracy point, where
the NEQSS is expected to be in a superposition of two charge
states. This can be observed by the evolution of the charge in
the scatter, shown in the inset of Fig. 11, where (N (¢)) changes
much less with respect to the density quench, see the inset
of Fig. 5(a). While in the density quench the superposition
is reached after an initial transient with a characteristic time
set by he hybridization strength I', in the w-quench protocol
the system already starts from a coherent superposition, closer
to the targeted NEQSS. However, for an easier comparison
between simulations with different induced charge or voltage
bias, we choose to use only the density quench, which, on
average, also shows a more robust convergence to constant
current flow.
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Coexistence of superconductivity with partially filled stripes in the Hubbard model
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Combining the complementary capabilities of two of the most powerful modern computational
methods, we find superconductivity in both the electron- and hole-doped regimes of the two-
dimensional Hubbard model (with next nearest neighbor hopping). In the electron-doped regime,
superconductivity is weaker and is accompanied by antiferromagnetic Néel correlations at low dop-
ing. The strong superconductivity on the hole-doped side coexists with stripe order, which persists
into the overdoped region with weaker hole density modulation. These stripe orders, neither filled
as in the pure Hubbard model (no next nearest neighbor hopping) nor half-filled as seen in previous
state-of-the-art calculations, vary in fillings between 0.6 and 0.8. The resolution of the tiny energy
scales separating competing orders requires exceedingly high accuracy combined with averaging and
extrapolating with a wide range of system sizes and boundary conditions. These results validate
the applicability of this iconic model for describing cuprate high-T. superconductivity.

I. INTRODUCTION

Does the Hubbard model qualitatively capture the es-
sential physics of the high temperature superconducting
cuprates? This question has been debated since shortly
after these materials were discovered [1-10]. As the
decades have passed it has become clearer that the an-
swer has to come from simulations powerful enough to
give definitive results on the properties of the model, so
that one can see whether these properties match those
observed experimentally. This has proved to be espe-
cially difficult because the ground states of the models
have been shown to be exceptionally sensitive to small
changes in the model terms and parameters, with com-
peting [11] or cooperating [12] charge, spin [13], and su-
perconducting (SC) orders [14-18]. The relevant model
parameters are in the most difficult regime — moderately
strongly-coupled — where most approaches struggle. The
frequent presence of stripes in the ground states increases
the sizes of the clusters needed to extrapolate to the ther-
modynamic limit.

A powerful tool has emerged to help overcome these
difficulties: the use of combinations of simulation meth-
ods with complementary strengths and weaknesses[19].
The density matrix renormalization group (DMRG) [20—
22] provides the most accurate and reliable results when
applied on fairly narrow cylinders [23]. Other methods

*These two authors contributed equally to this work.

work either directly in the thermodynamic limit [24, 25]
or at least on much wider clusters [26], but have ap-
proximations tied to unit cell size[24, 27, 28], coupling
strength, etc [25, 29, 30]. The constrained path (CP)
auxiliary field quantum Monte Carlo (AFQMC) method
[26, 31, 32] is particularly complementary to DMRG: it
can be used on much wider systems; the errors from
CP to control the sign problem have been consistently
modest [19]; and the underlying approximation of CP
is unrelated to the low entanglement approximation of
DMRG. AFQMC is based on a wave picture of superpo-
sition of Slater determinants, while DMRG is rooted in
the particle picture with strong coupling. Their quanti-
tative handshake proved to be crucial for uncovering the
delicate nature of the stripe correlations as we discuss
below. Previously, we used this combination, extrapolat-
ing to the two-dimensional thermodynamic limit, to find
that superconductivity is absent in the pure (i.e., with no
next nearest-neighbor hopping) Hubbard model [11]. In
that case, the lack of superconductivity was tied to the
occurrence of filled striped states[33].

Here, we apply this approach, with new develop-
ments, to tackle the Hubbard model with a non-zero next
nearest-neighbor hopping, ¢’. In connection to the typi-
cal phase diagram of cuprates, a nonzero t’ is necessary
to account for the particle-hole asymmetry and the band
structures. The t' # 0 model is significantly more dif-
ficult computationally, with challenges for both DMRG
and AFQMC. Where both methods apply, DMRG certi-
fies the high accuracy and reliability of AFQMC as used
here. As discussed below, in cases of ambiguity (e.g.,
in some width-6 cylinders), resolving the discrepancies



has often created new synergy between the two meth-
ods, and led to new insights. The phase diagram with ¢’
also turns out to be significantly more complicated, with
partially filled stripes coexisting with superconductivity
on the hole-doped side, and uniform antiferromagnetic
order coexisting with superconductivity on the electron
side. The final results for superconductivity, extrapo-
lated to the thermodynamic limit, are impressively simi-
lar to the properties of cuprates, with both electron and
holed doped SC “domes”, but with the hole doped side
being significantly stronger.

The Hamiltonian of the Hubbard model is

H=—t> éeo—t' Y el o

(ig), o (), o (1)

+U Z Nipfliy — Z Nio
i io

where ¢ or j labels a site on a square lattice, é;ro is

the electron creation operator, o = {f,]} denotes spin,
Nig = é;éw is the particle-number operator, and (ij)
and ((ij)) indicate nearest- and next-nearest-neighbors,
respectively. We set t as the energy unit. In cuprates
t' < 0 [34]; however,using a particle-hole transformation
to map fillings 1+6 — 1—4, we can study electron doping
by changing the sign of . We use ¢’ = —0.2 for hole-
doping and ¢ = +40.2 for electron-doping, appropriate
values for cuprates based on band structure calculations
[35, 36]. The onsite repulsion U is fixed at U = 8, again
a representative value for cuprates. We scan a range of
doping (denoted by §) by varying p.

Our study focuses on the ground state, which we ob-
tain in either cylindrical or fully periodic systems. The
use of cylinders serves two purposes. First they allow
direct comparisons between AFQMC and DMRG, which
is highly accurate in narrow cylinders. Second, they are
convenient for studying spin and charge orders, in which
we apply spin-symmetry-breaking pinning fields on the
edges of the cylinder to help detect ordering from the re-
sulting local spin and charge densities. The fully periodic
simulation cells allow AFQMC to better approach the
thermodynamic limit (TDL). As shown below, it turns
out to be crucial to systematically average over differ-
ent boundary conditions. To compute the pairing order
parameter, we apply twist averaged boundary conditions
(TABC) over a large number of random twists, in systems
with up to 500 lattice sites. The computations presented
in this work became possible only with new algorithmic
developments in both our methods, which improved ca-
pability and increased accuracy, as we discuss further in
the Method Section.
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FIG. 1: The d-wave pairing order parameter versus doping
§ in the ground state for the hole-doped (¢ = —0.2) and
electron-doped (t' = 40.2) regimes. Representative spin and
charge correlations are also shown for three parameter sets a,
b, and c. A4 are the spontaneous pairing order in the thermo-
dynamic limit, while the spin and charge (hole) patterns are
drawn from the middle of 28 x 8 (a), 24 x 8 (b), and 40 x 8 (c)
cylinders with antiferromagnetic spin pinning fields applied
to the two edges. Note that hole densities start at 0.1. Grey
shadows for spins are to aid the eye.



I1II. RESULTS

A. Overview of pairing and coexisting spin/charge
orders

Figure 1 presents an overview of our results, a “phase
diagram” of the computed pairing order parameter, to-
gether with representative spin and charge correlations.
The pairing order parameters have been extrapolated to
the TDL, using full TABC in large simulation cells (see
Method and SM). We expect this zero-temperature prop-
erty to be loosely connected to the transition tempera-
ture T, most readily observed experimentally (however,
see [37, 38]). On both the electron- and hole-doped sides,
we find dome-like d-wave pairing orders which resemble
the T, domes in the typical phase diagram of cuprates.
The pairing order is significantly larger in the hole-doped
region than in the electron-doped region, which is also
consistent with the phase diagram of cuprates [39]. Spin
and hole densities are shown for the three representa-
tive systems marked as a, b, and c¢. These calculations
were performed with AFM pinning fields on the edges of
the cylindrical simulation cells (details in SM). The spin
and hole densities thus provide a simple and convenient
way to visualize the spin and charge correlations. We
have taken care to ensure that the results are drawn from
very large systems and the spin and charge patterns are
representative of different boundary conditions. In the
electron-doped region, the spins show single-domain anti-
ferromagnetism with nearly uniform hole densities in the
bulk. In the hole-doped region, stripe and spin-density
wave (SDW) correlations are observed, with modulated
antiferromagnetic domains separated by phase flip lines
where holes are more concentrated. In contrast with
the pure Hubbard model, we find that the wavelength
of the modulation is not an integer multiple of 1/¢ (filled
stripes). Nor are the stripes half-filled as seen in previ-
ous state-of-the-art calculations [40]. Rather, they are
best described as partially filled, with fractional fillings
which vary with § as well as system size and boundary
conditions. These behaviors of spin and charge are again
consistent with the phase diagram of the cuprates [39],
where uniform AF correlations persist with substantial
doping on the electron-doped side, but short or long-
ranged incommensurate magnetism and stripes are ob-
served starting at small doping on the hole-doped side
[41, 42].

This phase diagram contrasts sharply with that of the
t-t'-J model[43, 44], which can be derived as an approx-
imate strong-coupling Hubbard model at low doping. In
the t-t'-J model, recent DMRG studies all point to strong
d-wave superconductivity on the electron-doped side [43—
45], which coexists with antiferromagnetic correlations
with increasing strength as ¢’ increases; some differences
remain concerning whether long-range AF order occurs
[46]. No superconductivity, only stripes, have been found
on the hole-doped side. It has been an open question
whether this failure of the t-t'-J model to qualitatively

=

2 B

- t/sl

3 i v 0.0 =

VAR AVANRTATA
N/ \J -—0.2:
2/3 3/5, NIPS 2/3 [ |

/23 NIPS

FIG. 2: Evolution of the stripe patterns with system size
(6 = 1/8, hole-doped). The staggered spin densities are shown
as linecuts in periodic cylinders. The length of the cylinder
(Lz) is varied across the three columns and the width (L)
across rows. AFM pinning fields are applied at the two edges
of the cylinder (x = 1 and = = L), either in phase or with
a m-phase shift (marked by an asterisk); the one with lower
energy is shown. The filling fraction f of each stripe pat-
tern is indicated, with NIPS denoting non integer-pair stripes.
DMRG results (red) are shown for width-4 and 6 systems and
AFQMC results (black) are in good agreement with them.
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explain the cuprates was due to the strong-coupling ap-
proximations of that model, or to other flaws or miss-
ing terms affecting both the Hubbard and ¢-t'-J (single
band) models. Here the strong differences in the phase
diagrams of the two models point to the former. These
differences have not been clear in previous studies on nar-
rower cylinders, which are impacted by strong finite-size
effects [47, 48].

B. Underdoped region: 1/8 hole doping

A relatively large pairing order parameter is found
here, in coexistence with stripe correlations, as shown
in Fig. 1. To better understand the nature of the spin
and charge correlations, we systematically study their
evolution with system sizes in Fig. 2. The computations
were performed in L, x L, cells, with periodic (PBC)
or anti-periodic boundary condition (APBC) in the ¢-
direction and open BC along & (i.e., cylinders). AFM
pinning fields (along 2) were applied at © = 1 and L,
to break the SU(2) symmetry and induce local spin or-
ders, such that the local spin density S, (z,y) becomes
a proxy of spin-spin correlations away from the edges of
the cylinder.

Modulated AFM patterns are clearly seen in all the
systems. Correspondingly, hole densities are enhanced at
the nodes of the spin modulation, as illustrated in Fig. 1
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FIG. 3: Partially filled stripe patterns on the hole-doped side,
at § = 1/8 and 1/5. The stripe fillings are shown for a variety
of system sizes, in cylindrical cells with width L, = 4 up to 12,
and lengths ranging from 16 to 48 (shown as adjacent symbols
at fixed Ly). Results for both PBC and APBC are shown.
Narrow cylinders favor integer-pair stripes (IPS, indicated by
green bars). Fluctuations are strong even in large systems.

(results on the corresponding hole densities for Fig. 2 can
be found in SM). The characteristic wavelength of the
modulation, Aspw, varies with system size. We define
a filling fraction of the stripe: f = d Aspw/2, i.e., the
number of holes per lattice spacing along a stripe. In the
pure Hubbard model, f = 1 since Aspw = 2/J [49, 50].
Then, nominally the number of electron pairs per stripe
is n, = f Ly/2. If n, is an integer, we refer to the state
as integer-pair stripe (IPS); otherwise the state is labeled
as non-IPS (NIPS).

Previous studies in width-4 cylinders have found that
the ground state in this system has half-filled stripes
[40, 43, 44]. Our results confirm this picture, with good
agreement between AFQMC and DMRG, but also show
that the half-filled stripe turns out to be special to width-
4. As the system size increases, the stripe filling fluctu-
ates between 3/5 and 3/4. NIPS states appear frequently,
which have not been observed before. Previous calcu-
lations [11, 51] show that states with IPS are favored,
which was taken as an indication of the existence of local
pairing of electrons in the stripe state. Here, with the
inclusion of ¢/, the electron is more mobile and pairs of
electrons become coherent to display long-range pairing
order. This is further discussed and contrasted with the
over-doped region next.

C. Overdoped region: 1/5 hole doping

A strong superconducting order parameter is found in
the ground state of the hole overdoped region of § = 1/5,
with strength comparable to 6 = 1/8 (see Fig. 1). The

behavior of spin and charge correlations show common
features but also significant differences between the two
regions. Figure 3 summarizes their stripe fillings side by
side, based on computations in about 30 systems. Sev-
eral trends are evident. In narrow cylinders, IPS states
are favored at both dopings. In over a dozen different
width-4 and width-6 systems across the two dopings,
AFQMC and DMRG agree in each case on the stripe
wavelength and filling fraction. In both regimes the fill-
ing fraction varies widely with system sizes and bound-
ary conditions, and fluctuations continue through sys-
tems with over 500 lattice sites. As the size grows (wider
cylinders), IPS states are no longer favored, and both
systems tend to fractional stripe fillings. These results
indicate that with ', the stripe patterns — but not the
existence of stripes — are much more fragile than in the
pure Hubbard model.

Both the spin and charge modulations are weaker at
1/5 doping than at 1/8. Although f is larger in the
TDL, the holes are more mobile and spread out in the
overdoped region. The hole density is nearly uniform,
with less than 5% of the holes contributing to the den-
sity fluctuations. At 1/8 doping, the stripe order is more
pronounced, as illustrated in Fig. 1. Still, the peak den-
sity of holes, at the nodes of the spin correlation, is only
~ 30% higher than the average. The notion of stripe
filling derives from a particle picture, most applicable
to holes in Wigner-crystal-like distributions. The holes
here have a strong wave character [49], with which the
fractional fillings of stripes we observe are more readily
compatible.

D. Electron doped region

Experimentally, the electron-doped side is simpler,
without the competing stripe state [41, 52] or pseudogap
phase in cuprates [39]. The critical doping for the long-
range AF order on the electron-doped side is larger than
that on the hole-doped side, the superconducting dome
is smaller, and the transition temperature is lower. The
phase diagram in Fig. 1 and the spin and hole densities
in Fig. 4 are consistent with these features.

Our results reveal several other important features on
the electron-doped side. There are considerable varia-
tions of the spin and charge correlations with system sizes
and boundary conditions, even though the sensitivity is
less compared to the hole-doped side. As illustrated in
the SM, two entirely different ground-state orders are ob-
tained from width-4 and width-6 cylinders; APBC and
PBC also lead to opposite conclusions in each simula-
tion cell. Even in the width-8 systems in Fig. 4, which
display robust Néel order, different boundary conditions
still show variations in the charge correlation. Super-
conductivity manifests a more dramatic volatility. Using
PBC, the most common approach to date, calculations in
width-4 and width-6 cylinders would conclude a strong
pairing order in the electron-doped regime. (Note that
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FIG. 4: Spin, charge, and pairing properties on the electron doped side (§ = 1/8), and their variations with boundary conditions.
(a) APBC along g-direction in a 28 x 8 cylinder gives nearly uniform Neel order (only a 16 X 4 central region is shown). (b)
Under PBC a modulated AFM order with larger spatial variations in spin magnitude is seen. (¢) The computed pairing orders
in 16 x4 and 16 x 6 cylinders (at a fixed value hq = 0.021 of applied global d-wave pairing fields) show opposite trends with PBC
and APBC. The final pairing order, computed from TABC with fully periodic supercells of increasing L,, is shown together

with the TDL extrapolation by the gray band.

DMRG and AFQMC give fully consistent results.) In
contrast, under APBC the same calculations predict no
pairing. The uncertainties with respect to finite size and
boundary conditions are much larger than the final sig-
nal at the TDL. Thus even a qualitative conclusion on
superconductivity would be challenging without our new
approaches employing TABC, systematic extrapolation
to large sizes, and other methodological advances, which
are discussed next.

III. METHOD

The physics of the Hubbard model has proved highly
elusive and challenging to pin down. This was magnified
substantially with a non-zero ¢'. The difficulties include
more sensitivity and stronger dependency on system size
and BC, as we have illustrated. In addition, ¢’ turns out
to affect the interplay between low-lying states in signif-
icant ways. For instance, with ' = 0, stripe and super-
conductivity manifest as competing orders. Filled stripe
states are particularly stable, with nesting contributing
a key factor. A non-zero t' affects the nesting condition
(frustrates the Néel order) and alters the landscape of
the low-lying states. This has demanded much higher
resolution from the numerical methods.

The methodologies employed in this work have a num-
ber of distinguishing features which made it possible to
achieve a qualitatively higher level of accuracy and re-
liability. Two complementary, state-of-the-art computa-
tional methods are used synergistically. We implement
both U(1) [53] and SU(2) symmetry-adapted [54] DMRG
calculations for different setups and push them to the
large bond-dimension limit. In AFQMC, we introduce

a further advance in the optimization of the constrain-
ing trial wave function, which is determined fully self-
consistently [32], with no input parameter. Extensive
and detailed comparisons between AFQMC and DMRG
are performed on width-4 and width-6 cylinders, un-
der identical conditions. The same AFQMC algorithm,
which has no room for tuning, is applied to larger sys-
tems. The formulation of systematic twist averaging for
the computation of the pairing order parameters provides
an effective way to sample the low-lying states.

A. Twist averaging as an effective means to sample
low-lying states

The use of twist-averaging [55, 56] in this work has
two crucial roles. First, systematically averaging over
twist angles, combined with the ability to reach large
system sizes and careful finite size extrapolation, enables
us to approach the TDL reliably. Second, the random
twist angles provide an effective means to sample the
low-lying states, and their averaging reduces the impact
of rare events of accidental degeneracy, and smoothes out
the effect of level crossings as a function of an applied
pairing field (see SM).

As shown in Fig. 4, different boundary conditions can
result in variations in the pairing order parameter which
are many times larger than the signal, even in nominally
rather large sizes (width-6 cylinders). Both PBC and
APBC are twist angles of special symmetry, and are of-
ten particularly volatile. We apply TABC with quasi-
random twist angles [56]. The TBC can be thought of as
the electron gaining a phase when it crosses the bound-
ary. Equivalently, we can choose another gauge by dis-
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FIG. 5: Importance of TABC for accurate determination of
the pairing order. The main figure shows the d-wave pairing
order parameters in a 20 x4 cylindrical cell at 1/5 hole doping,
after full twist-averaging over k,. AFQMC and DMRG results
agree across the entire range of hg, the strength of the applied
pairing fields. The inset focuses on hqy = 0.205. A4 computed
from DMRG and AFQMC are shown as a function of k,, for
the ground state (connected by solid line) and some of the
lowest-lying excited states (open symbols). Averages of the
solid symbols lead to the TABC results in the main figure.

tributing the phase evenly in each hopping term. When
a twist is applied, care must be taken in defining the
pairing order parameter, whose form is gauge-dependent
but the expectation value should be gauge-independent.
TABC reduces the fluctuations in the computed pairing
order parameter, as seen in Fig. 4, and further discussed
below and in the SM. (In Ref. [57], TBC and twist av-
eraging are shown to accelerate the extrapolation with
calculations on cylinders.)

With the inclusion of a non-zero t’, the perfect nest-
ing in the Fermi surface at half-filling is absent. Sub-
tle variations near the Fermi level from finite size and
boundary conditions can have much larger effect on the
formation of collective spin modes, hence there is more
sensitivity in the property of the low-lying states. These
states can be very close in energy such that any small
finite temperature (e.g., under experimental conditions)
would smear them out and render them indistinguish-
able. TABC provides an effective sampling of such low-
lying states which can average out the fluctuations so as
to more reliably capture the intrinsic properties. An il-
lustration is given in Fig. 5. The pairing order parameter
exhibits large variations as a function of the twist angle,
both in the ground state and low-lying excited states, as
seen in the inset for one value of hy. The calculation can
“hop” from one state to another among the bundle of
low-lying states, depending on the initial condition, con-
vergence criterion, etc, even under high-quality compu-
tational settings (e.g., large bond dimensions in DMRG).
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FIG. 6: Computation of the ground-state pairing order pa-
rameter at the thermodynamic limit. (a) shows extrapolation
to the TDL at a fixed hg, the strength of the d-wave pairing
fields. (b) shows extrapolation of the TDL result from (a) to
ha — 0. Three representative systems are shown. In (a), each
data point is obtained by TABC over (kz, ky) in supercells of
Ly x Ly, and only results from large supercells are included.
In (b) linear or quadratic fits are performed at small values
of hg4, with extrapolated values marked as stars.

This is also reflected in the modest level of agreement be-
tween the two methods for each particular state. With
TABC, however, their agreement is excellent across the
entire range of hy (which spans many level-crossings, see
SM), and the two methods give fully consistent conclu-
sions.

B. Extrapolation of pairing order

The spontaneous pairing order parameter in the TDL,
Ay, is obtained from a massive number of computations.
At each parameter set (¢’ and doping), Ay(N, hg) is com-
puted for many different simulation cell sizes N, at tens of
hg values, with each averaged over tens of quasi-random
twist angles. We then take the limit Ayz(N — oo, hy) at
each hg, followed by the extrapolation Ag(co,hg — 0).
The procedure is illustrated in Fig. 6. Panel (a) shows
the first step, where we use fully periodic N = L, x L,
systems with quasi-random twist angles (kz, k) applied
to both directions. We verify that L, is sufficiently large
such that the results have converged within our statistical
accuracy. We then extrapolate the TABC results with re-
spect to 1/L,, excluding small sizes. (Deviations are vis-
ible from width-4 systems, which can have different pair-
ing symmetry from ordinary d-wave [48].) In Panel (b)



extrapolations are then performed using small hy values
(< 0.05 for linear and last 10 or so points for quadratic
fits), yielding the final spontaneous pairing order param-
eter Ay at hgy — 0. As can be seen, the quality of the
fits is excellent; in each case, the linear and quadratic fits
give consistent values within statistical errors.

IV. CONCLUSION

Can the single band Hubbard model capture the qual-
itative physics, particularly the superconductivity, of the
cuprates? Here, more than 35 years after the discovery of
the first cuprate superconductor [1], we conclude that the
answer is yes, that the Hubbard model with a next near-
neighbor hopping ¢’ distinguishing between electron- and
hole-doping captures the essential features of the charge,
magnetic, and pairing orders.

The computed pairing order parameter in the ground
state displays dome-like structures versus doping, resem-
bling the T, domes of the cuprates. On the hole-doped
side, we find the coexistence of superconductivity with
fractionally filled stripe correlations, with nominal stripe
fillings in the range 0.6-0.8 in sufficiently large sizes. On
the electron-doped side, at lower dopings, uniform or
weakly modulated antiferromagnetism, along with uni-
form or weakly modulated doping, coexists with some-
what weaker superconductivity. The general appearance
of stripe orders on the larger systems with non-integral
numbers of pairs indicates that pairs fluctuate between
stripes, promoting long-distance phase coherence and
thus superconductivity; in contrast, for ¢’ = 0 the stripes
were filled, and superconductivity was absent [11].

This picture is in contrast to that of the ¢-t’-J model,
once thought to be interchangeable with the Hubbard
model, but which does not appear to exhibit supercon-
ductivity on the hole-doped side [43-45]. The ground
states of the models are not universal, and to capture
the subtle interaction of the various intertwined orders
requires both very careful finite size extrapolation and
very high accuracy and reliability in the simulation meth-
ods. Even within the single-band ¢-t' Hubbard model, an
enormous body of works exists, with widely varying and
often conflicting results. Our results also explain why this
has been the case — the model shows extreme sensitivity
of the properties to finite sizes and boundary conditions,
and to any biases of approximate methods.

Here we have used the combination of DMRG and
AFQMC, with DMRG benchmarking and validating the
CP approximation in AFQMC on narrower systems and
the AFQMC used to reach much larger systems. We
have greatly improved the finite size extrapolations by us-
ing TABC. These together with methodological advances

within each approach provided a powerful tool to address
the question with a new level of capability and resolution.

In the models or parameter regimes on the hole-doped
side where superconductivity is not present, one still finds
strong indications of paired holes. For example, if holes
within stripes were not paired, one would expect to find
single stripes having an odd number of holes in about
half the systems, but instead only even numbers of holes
in each stripe are found. Whether there is superconduc-
tivity or not seems tied to the properties of a pair, e.g.,
its effective mass, which is strongly influenced by model
parameters such as t'. A heavy pair or one which inter-
acts strongly with the magnetic degrees of freedom of the
region around it is more likely to be locked up in a stripe,
suppressing phase coherence. This model-specificity and
non-universality raises the question: is there any simple
analytic theory of cuprate superconductivity in the style
of BCS, or must we always resort to simulation?

Our study still leaves much to do in connecting the
models quantitatively to experiments. We have not pre-
dicted transition temperatures, only order parameters.
We have not studied transport and dynamical proper-
ties of the models. Many other properties of the one-
band Hubbard model remain to be determined and un-
derstood. Other terms [58, 59] and effects not present
in the Hubbard model may still play important quanti-
tative roles. Nevertheless, it appears that qualitatively,
the t-t'-U Hubbard model has “the right stuff”.
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I. PARTIAL PARTICLE-HOLE
TRANSFORMATION OF THE HUBBARD
MODEL

When pairing fields are applied in the Hubbard model,
the total particle number is not conserved. The usual
ground-state AFQMC is formulated in the space of Slater
determinant with a fixed electron number. While a more
general solution is to reformulate AFQMC in Hartree-
Fock-Bogoliubov (HFB) space [1], the problem here can
be solved without modifying the AFQMC codes, by ap-
plying a partial particle-hole transformation [2]

éiT — Czim é;rT — afj,r
Gy — di (-1)', el = diy(-1), (1)
where ¢ labels the lattice sites in the bipartite lattice.

With this transformation, the ¢’ Hubbard Hamiltonian
in Eq. (1) in the main text turns into

H=—tY dl,dj,—t > s(o)dl,d
(id)o ((id)e @)

+U D (g — thigiig) — p Y (g + 1 — 1)) |

where s(1) = +1 and s(}) = —1, and m; , = djatfw
Note that the next near-neighbor hopping changés sign
for down spins after the transformation. The pairing op-
erator A;; = (¢11¢j) — ¢ 1¢1)/V/2 is transformed to:

Ay = (-1l diy — (—1)'df dj))/vV2 (3)

which is now a spin-flip hopping term. The sign of
U is reversed, meaning the interaction turns to attrac-
tive. Up and down electron now acquire effective chem-
ical potentials 4 — U and —pu, respectively, which means

*These two authors contributed equally to this work.

(O (M) # (D2, (). After the transformation we have
> (g i) =Y (g +1— i) = N, (4)

K3 K3

such that the total number of electrons equals the number
of sites, i.e., the system is at half-filling but with spin
imbalance. The random walkers (Slater determinants)
are now represented as 2N x N, matrix [3] in the AFQMC
calculation, and each orbital in the Slater determinant
is now a spin-orbital with a mixture of up and down
components.

II. TWIST BOUNDARY CONDITIONS

Twist boundary conditions (TBC) in =z-direction
means the wave-function satisfies:

¥(ry + Léy,ro, - ,ry) . (B)

For convenience we have used L to denote L, the linear
dimension of the periodic cell in a-direction. (The defini-
tions of TBC in other directions are similar). For the two
dimensional systems studied in this work, the phases for
the two directions are independent of each other, and the
phase factors from z- and y-directions are multiplicative.
Thus, with no loss of generality, we will only explicitly
write out one dimension (x) below. We will assume that
the lattice sites are labeled from 1 to L.

Different gauges can be adopted to realize TBC. We
discuss two common choices here. In gauge A, an electron
picks up a phase only when it crosses the boundary, while
in gauge B, the phase is split over all bonds evenly.

7I'N) = eiezw(r17r2a e

A. Gauge A

In gauge A, if we apply the same twist for 1T and |-spins
in the repulsive Hubbard model, we have

1o = exp(if)c],

cr41,0 = exp(—if)ci o (6)



So the hopping between the last and first site is modified
as

—t&l epe + h.e — —texp(i0)él iy +he (7

while the other hopping terms remains unchanged. After
the partial particle-hole transformation in Eq. (1), the
spin up term is unchanged, but the phase for down spin
changes to —0 as

— texp(—if)d] dp, + h.c (8)

The same is true for the ¢’ term.

With TBC, we also need to modify the definition of the
pairing operator (Ag; = (éx1éy — ¢k ¢1)/V/2, for bonds
connecting nearest-neighbor sites, (jk)) for the bond con-
necting the first and last site as

Ar = exp(—ib)(érpér) — é1pé01)/ V2. (9)

When applying the pairing field to calculate the pair-
ing order, we need to include the phase in Eq. (9) when
twist boundary conditions are imposed. In the AFQMC
calculation, the pairing operator in Eq. (9) can be trans-
formed, following Eq. (1), as

Ayp = exp(—i0)(d] dry — (—1)Ed} dir)/V2  (10)

Other pairing terms are transformed to the —U case fol-
lowing Eq. (3)

B. Gauge B

We next consider gauge B in a similar setup to Gauge
A. Now the phase is spread evenly over each bond and
we have, for the repulsive model

i 0
ey = choexp(i(i —1)7)
’ 0
¢jo = Cjoexp(—i(j —1)F) (11)
and
T _ i0) el
CLi1,0 exp(i )01,0
cr+1,0 = exp(—ib)ci o (12)

The nearest neighbor hopping term is then modified to
- tz exp(i@/L)é}HUéjg + h.c. (13)
J
The ¢’ term has similar form.
The pairing operator Ay; = (Ckréjp — Ckié1)/V?2 is
modified as
Ayj = (Eméjy —enyéyy) exp(—i(k+j—2)0/L)/V2 (14)
For the bond connecting the first and last site, we have
Apy = (brréry — ey éry) exp(—i(2L = 1)0/L) /2 (15)

We can then follow the particle-hole transformation in
Eq. (1) to transform the definition of pairing order to
the negative U model, which is used in the AFQMC cal-
culation.

C. The equivalence of the two gauges

The two gauges discussed above are equivalent and
physical quantities should have the same values under
them, which we have explicitly verified. Since the inter-
action term is independent of the twist angle, it is conve-
nient to test the TBC implementation in non-interacting
systems. For example, in a 20 x 4 lattice with ¢’ = —0.2¢,
w = 0.8, and twist angle 6, = 1.2994x,0, = 0.6026m, it
is easily checked in all our codes that physical quanti-
ties, such as the energy per site (—1.15861112), average
pairing order per bond (0.01108939), and the electron
density (0.82422077), are all exactly the same under the
two gauges.

III. SELF-CONSISTENT CONSTRAINT IN
AFQMC

We apply magnetic and pairing pinning fields to probe
the corresponding response in the studied systems. A
self-consistent procedure in AFQMC allows us to apply
a constraint to remove the sign problem. We describe the
pinning field calculations and the self-consistency proce-
dure below.

The magnetic pinning fields are typically applied in
cylindrical cells, to one or both ends of the cylinder, not
in the rest of the cell. We try different configurations of
the magnetic pinning fields to probe the possible mag-
netic order or correlation. The strength of the fields
is fixed at h,, = 0.25, and limited to only the edge(s)
of the cylinder. For most of the systems, we applied
anti-ferromagnetic pinning fields at the open edges of the
studied cylinders ((—1)@=*%)p,, for i, = 1 and L,). In
some cases, we also test a pinning field configuration with
a m phase to the pinning magnetic fields on the right edge
as ((—=1)CG=+i)p, . for i, = 1 and (—1)C«*+Dph, for
iz = L), and compare the energies to determine the true
ground state, the one with the lower energy. Note that
it is important in this scheme to examine progressively
larger (longer) systems, in order to remove the effect of
the local pinning field. Ref. [4] includes further details of
our analysis method and how we extract information in
the TDL.

To compute the pairing order parameter, we apply
global pairing fields across the entire simulation cell, sim-
ilar to Ref. [2]. To probe the d-wave pairing response
the applied pair-inducing fields on vertical and horizon-
tal bonds have the same strength hy but opposite signs.
The Hamiltonian with pairing fields is

H'(ha) = H + Hy(hy) (16)

where

N Al + Aj
Hy(ha) = —ha Y bij%, (17)
(4,4)
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FIG. 1: Robustness of the self-consistent constraint in

AFQMC. An example is shown for the pairing order parame-
ter in the 1/4 hole-doped Hubbard model on a 16 x 4 cylinder.
On the left panel, the self-consistent calculation starts with
an initial value of @ = 0.1. The calculation converges with a
handful or iterations to the exact result (DMRG, red) in this
system, with a converged value @ = 0.43. On the right panel,
the calculation is initialized with o = 1.0, and converges from
the opposite direction to the same result.

where b;; = +1 for a bond connecting two nearest-
neighbors ¢ and j in the z-direction and b;; = —1 if (ij)
is in the y-direction.

The pairing order is calculated from the derivative of
the ground state energy E’(hg) with respect to hg, fol-
lowing the Hellmann-Feynman theorem. Recall these cal-
culations are performed in the particle-hole-transformed
attractive Hubbard Hamiltonian in Eq. (2). We take the
ground state of the non-interacting Hamiltonian (U = 0
in Eq. (2)) with the pairing field ahq as trial wave func-
tion, where « is a parameter to be determined in the
self-consistent iterations. In the first step, we choose an
arbitrary « and calculate the average value of pairing
order with AFQMC using the corresponding trial wave
function as a constraint. We then tune the value of «
by minimizing the difference between the pairing orders
given by the non-interacting wave-function and the pre-
vious iteration of AFQMC. We then carry out the next
iteration AFQMC calculation with the new trial wave-
function. This process is repeated until « is converged.
In each mean-field solution we tune the value of chemical
potential to target the desired spin imbalance (i.e., the
electron density in the repulsive model). In performing
TABC, we determine the final value of « via averaging
over different twist angles. The value is found to con-
verge quickly, so a small set of pilot calculations can be
performed first to obtain a good estimate. More compu-
tations can be added if further precision is needed.

In Fig. 1, we show the computed pairing order in the
self-consistent process for the 1/4 hole doped ¢’ Hubbard
model on a 16 x4 cylinder. DMRG results are also shown,
because for this narrow system, it provides a reference
result which is essentially exact. In Fig. 1, we start the
self-consistent calculation with an initial value a = 0.1
(the left panel). After 6 iterations, the pairing order con-
verges to the DMRG results. The converged value of «
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FIG. 2: Strong sensitivity of the spin and charge orders to
system sizes and boundary conditions. Here we show results
for four different systems, all with the same bulk parameters
(6 = 1/8, electron doped), but different in size and bound-
ary conditions. Line cuts of the doped electron density (top
panels) and staggered spin density (bottom) are shown, with
combinations of two system sizes, 16 x 4 and 16 x 6, and
periodic (PBC) and antiperiodic (APBC) boundary condi-
tions. Antiferromagnetic pinning fields have been applied at
the left and right edges of the open cylinders. Two distinct
types of states appear, Néel AFM with fairly uniform electron
densities (left panels), and filled stripe states (right panels).
Good agreement is found between DMRG (filled symbols) and
AFQMC (empty symbols); the differences are tied to the sizes
and boundary conditions.

is @ = 0.43. We also obtain the same converged pair-
ing order and « value by starting the self-consistent pro-
cess with a = 1.0 (the right panel), indicating the self-
consistent calculation is independent of the initial value
of a.

IV. SENSITIVITY OF ORDER TO SYSTEM
SIZES AND BOUNDARY CONDITIONS

In Fig. 2 we show an example of the strong sensitiv-
ity of the ground states to system sizes and boundary
conditions (BCs). Two entirely different ground states
are obtained for the same physical parameters from four
different combinations of size/BCs, with an alternation
between the effects of size versus BC. Consistent results
are seen from both methods. This sort of sensitivity is
also observed on the hole-doped side (see Fig. 4). To
determine the order in the thermodynamic limit in these
systems thus requires computations in significantly larger
sizes than has been previously reached. Below, we also
show the presence of numerous low-lying states whose
ordering in energy can be affected by size and BCs. In
many cases these low-lying states can be tied to dif-
ferent stripe configurations. In the case of Fig. 2, the
system may be close to a phase boundary between the
two types of states[5]. The twist-averaging procedure
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FIG. 3: Tlustration of low-lying states and level-crossing.

The pairing order A4 (a) and energy per site (b) are shown
as functions of the global pairing field strength hq for a 1/5
hole doped system in a 20 x 4 cylinder. The error bars are
smaller than the symbol sizes. In (¢) and (d) the staggered
spin densities are shown along the x direction for the three
low-lying states from DMRG, for hq ~ 0.0075, the smallest
haq we consider. The AF magnetic pinning fields are applied
at the left open edge.

adopted here tends to average over the various states,
which allows better extrapolation to the TDL compared
to earlier approaches[6].

V. LEVEL CROSSING WITH APPLIED
PAIRING FIELDS

In addition to the enhanced sensitivity of the ground
state to the boundary conditions and system sizes in the
t’ Hubbard model, the evolution of the ground state with
the strength of the applied pairing field is subtle, and cre-
ates another computational challenge. In Fig. 3 (a) and
(b), as an example, we show the evolution of a few low-
lying states as a function of hg, in a 20 x 4 system at
1/5 hole doping. As hy decreases, the low-lying states,
which are separated by tiny energy differences (note the
small energy scale in b), exhibit crossovers between sev-
eral branches. The different branches are characterized
by different numbers of stripes in the states, as shown
in Fig. 3 (¢) and (d). That d-wave pairing field induces
strong level crossings is another indication of the intimate
connection between the fluctuation of the stripe state and
superconductivity in the system. As mentioned, such
level-crossings make the comparisons between DMRG
and AFQMC more challenging, as each calculation is of-
ten sensitive to even small variations in the calculational
parameters. However this effect is reduced by employing
twist averaging, in which all the low-lying states are sam-
pled. As can be seen in Fig. 5 in the main text, TABC
effectively treats the crossovers as a function of hgy, which
results in smooth curves, and DMRG and AFQMC agree
very well.
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FIG. 4: Hole density for the systems in Fig. 2 in the main

text for 1/8 hole doping. The evolution of the stripe patterns
is shown versus system size. The hole densities are shown
as linecuts along the length of the cylinders. The length of
the cylinder (L) is varied across the three columns and the
width (L,) across rows. AFM pinning fields are applied at
the two edges of the cylinder (x = 1 and z = L), either in
phase or with a m-phase shift (marked by an asterisk); the
one with lower energy is shown. The filling fraction f of each
stripe pattern is indicated, with NIPS denoting non integer-
pair stripes. DMRG results (red) are shown for width-4 and
6 systems, and AFQMC (black) are in good agreement with
them.

VI. SUPPLEMENTAL DATA
A. Hole density for 1/8 hole doped systems

In Fig. 4, we show the hole density for the systems
in Fig. 2 in the main text. For systems with width 4
and 6, for which DMRG is available, we find good agree-
ment between AFQMC amd DMRG results. In width-6
systems, the discrepancies are somewhat larger in the
density here compared to the spin in Fig. 2 in the main
text. This is likely because of a combination of two fac-
tors. First AFQMC has shown in ¢ = 0 Hubbard model
a slight tendency to under-estimate the amplitude of the
density fluctuations in stripes [4, 7]. Second, in some
cases we have seen indications that the DMRG may not
have reached full convergence in width-6 systems, even
with the very large bond dimensions we were able to do.

B. Additional data on pairing order parameter

In this subsection, we include the finite size data for
the pairing order, as well as the extrapolation process to
obtain the spontaneous pairing order in the thermody-
namic limit which is plotted in Fig. 1 in the main text.



1. Electron doped region

In Figs. 5, 6, and 7 we present the data for pairing order
in the electron-doped region, with 6 = 1/8,1/5, and 1/3
respectively. As discussed in the main text, we use fully
periodic systems (i.e., torus simulations cells of L, x L)
and perform TABC with quasi-random twists. We have
verified that the results have converged with respect to
L, to within our statistical error. When extrapolating
the pairing orders with width of the system, we omit
width-4 systems. When extrapolating the TDL values
versus hg, we perform both linear and quadratic fits. In
the linear fits, we use hg < 0.05, when the data is clearly
in the linear response regime. In the quadratic fits, we
include more data points, 10-12 values of hy. We find
that the resulting extrapolated Ag(hgy — 0) values are

often indistinguishable. When there is a difference, the
result from the better fit (smaller x?) is used. The final
pairing order at TDL is 0.007(3),0.007(4), and 0.000(2)
for 6 = 1/8,1/5, and 1/3, respectively, as reported in
Fig. 1 in the main text.

2. Hole doped region

In Figs. 8, 9, 10, and 11 we present the data
for pairing order in the hole-doped region, with § =
1/8,1/5,1/4, and 1/3 respectively. The final pair-
ing order at TDL for 6 = 1/8,1/5,1/4, and 1/3 are
0.017(3),0.016(2),0.007(3), and 0.002(3), as shown in
Fig. 1 in the main text.
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The Anderson impurity model is a paradigmatic example in the study of strongly correlated quan-
tum systems and describes an interacting quantum dot coupled to electronic leads. In this work,
we characterize the emergence of the Kondo effect by investigating the model dynamics following a
quantum quench based on matrix product state simulations. The relaxation of the impurity mag-
netization allows for the estimate of the predicted universal scaling of the Kondo temperature as
a function of the impurity-lead hybridization and quantum dot repulsion. Additionally, our simu-
lations permit us to evaluate the current in the nonequilibrium quasi-steady state appearing after
the quench. Through their values, we examine the dependence of the conductance on the voltage
bias V; and on the impurity chemical potential Vg, which displays a zero-bias Kondo peak. Our
results are relevant for transport measurements in Coulomb blockaded devices, and, in particular,

in quantum dots induced in nanowires.

Introduction. The Kondo effect is the most emblem-
atic embodiment of strong correlations in condensed mat-
ter systems. The advances in the fabrication and mea-
surement techniques of nanostructures allowed us to ob-
serve its distinctive zero-bias conductance peak in a wide
class of systems, including gate-defined quantum dots
[11 2], nanotubes [3] and semiconducting nanowires [4].

In these mesoscopic systems, however, the dynamics
of the quantum impurities at the basis of the Kondo ef-
fect is typically too fast to be observed. A complemen-
tary experimental platform has been recently offered by
quantum simulators of ultracold fermionic Yb atoms [5].
In these setups, the characteristic time scales are much
longer than in their solid state counterpart, thus enabling
the analysis of the dynamics of the spin impurities at the
basis of the Kondo effect in out-of-equilibrium transient
states [0].

Inspired by these developments, in this work we ana-
lyze the dynamics of the Anderson impurity model after
a quantum quench through matrix product state (MPS)
simulations. By studying the transient behavior of its im-
purity magnetization, we provide a numerical verification
of the Kondo time scale consistent with previous renor-
malization group results [7]. We derive the conductance
of the corresponding two-terminal problem, relevant for
the experimental study of Coulomb blockaded nanowires
with induced quantum dots.

The out-of-equilibrium properties of quantum impu-
rity models following quantum quenches are considered
a paradigmatic playground to observe how strong correla-
tions develop through time evolution in many-body quan-
tum systems and have been recently studied by means of
a vast set of analytical and numerical techniques [S8HIS].
In the following we will apply the MPS algorithm de-
scribed in Ref. [19] to simulate the time evolution of the
two-terminal Anderson impurity model (AIM).

The model. The AIM represents an electronic envi-
ronment coupled with an interacting magnetic impurity;
it is one of the most popular yet simple models that dis-
play the Kondo effect, and it constitutes the central ele-
ment of dynamical mean field theory methods for study-
ing correlated materials, making it a fundamental prob-
lem for many numerical algorithms [20]. Its Hamiltonian
reads

f’j = ﬁleads + ﬁtunn + ﬁAIM , (1)
where
Hamg = Unpiy + V(i +10y), (2)

with n, = J:f,cfg describing the occupation of the two spin
states of a single-level quantum dot, which, in turn, plays
the role of the magnetic impurity and is characterized by
the Hubbard repulsion U and the chemical potential V.
Unless otherwise stated, we will focus on the particle-hole
symmetric point V;, = —0.5U.

The lead Hamiltonian

Hicads = — Z ta,o’,l (6;071604707[ + HC) + Z Ma,o"ﬁfa,o’,l

a,o,l a,o,l

(3)
describes two spinful fermionic chains (o = L, R) with
a spin-dependent chemical potential p,,, and a hopping
amplitude ¢; = tge~(=1/¢ that decreases exponentially
as a function of the distance from the site [ = 1, with
a decay length £. This is known as Wilson construction
and it is commonly used in numerical renormalization
group approaches to impurity problems. Moreover, it
has been shown effective to increase both the resolution
at small voltage bias, namely by mimicking an effectively
larger system, and the stability of the time evolution in
MPS simulation of transport problems [8, [19]. Indeed,



a
@ -
pr D= Kf\ Uiy,
R TN
== _ | ur
CL ER

(b)

s <0 RN

Figure 1. (a) Sketch of the AIM: a single-level quantum
dot with Hubbard repulsion U is tunnel-coupled to two non-
interacting leads with chemical potentials pr and pg. (b)
Schematic representation of the MPS describing the system
[I9]. The sites of the chain represent single-particle orbitals
and are ordered by their energy. To account for the interac-
tion, we include an auxiliary bosonic charge site (represented
by a square) which counts the number of particles inside the
dot. This construction introduces long-range couplings (ar-
rows) in the Hamiltonian MPO, which however do not con-
stitute an obstacle for the TDVP algorithm used for the time
evolution.

given the finite size L, the density of states around the
Fermi energy depends on the hopping decay length &: the
smaller &, the more states are shifted toward the Fermi
energy, leading to a smaller energy level spacing. There-
fore, a strong decay of the tunneling provides higher en-
ergy resolution to accurately determine the dynamics for
states close to zero energy (thus at small bias voltages)[8].

Finally, the quantum dot and the leads are coupled
with a standard tunneling Hamiltonian

ﬁtunn - — Z Ja,a (6270,1620 + HC) N (4)

a,o

where ch, destroys an electron with spin ¢ on the impurity
level. Throughout this paper, we consider a uniform tun-
neling strength between the quantum dot and the leads
Ja.o = J and we denote by I' = 2J2 /t, the effective tun-
neling rate in the limit of infinite bandwidth (constant
density of states).

To bring the system out of equilibrium, we adopt two
different quantum quench protocols [I9, 21]: (i) in the
zero-bias quench, we initialize the system with J = 0 and
1, = pg, thus preparing a product state between the
impurity and the leads; at time t > 0, the leads are con-
nected to the quantum dot (J > 0) and the system equi-
librates towards a stationary state. (i) in the u—quench,

the system is initialized in the ground state at half filling,
i.e. with uniform chemical potential p;, = ur, and then
it evolves in time after a voltage bias is turned on. The
first protocol is more useful to study the relaxation of the
impurity magnetization and extract the Kondo tempera-
ture, while the second leads to a fast convergence of the
current to a nonequilibrium quasi-steady state. Indeed,
in the p-quench the initial state already captures some of
the non-perturbative Kondo correlations and therefore is
closer to the Kondo-like quasi-steady state that arises in
transport measurements.

Matriz product state simulations. Tensor networks of-
fer a powerful framework to simulate the real-time evolu-
tion of quantum impurity models [8) [9] TTHT3}, 151 [17] [18].
To simulate the post-quench dynamics, we model the
system with the MPS depicted in Fig. b): each site
represents a single-particle energy orbital of the non-
interacting and decoupled system (U,J = 0), and we
compute the unitary time evolution of the closed system
with the time-dependent variational principle (TDVP)
[22, 23]. In particular, we expand the construction pre-
sented in Ref. [I9] with the addition of the spin degrees
of freedom; the MPS ”sites” are ordered based on their
energies [24], such that the entropy growth during the
time evolution is restricted in an energy window, thus a
segment of the MPS, corresponding to the voltage bias.
Since the basis states (MPS ”site”) are ordered by their
energies regardless the number of leads, introducing mul-
tiple leads (or the spin degrees of freedom) is straightfor-
ward.

The interaction U is introduced by including an auxil-
iary MPS site that represents the charge N = 74 + 7 of
the dot [19]. Tunneling events increase or decrease this
charge by one. This construction is not strictly necessary
for a single impurity site as in the AIM in Eq. , but
it can easily allow for generalizations to multilevel dots
with a uniform all-to-all Coulomb repulsion described by
an effective charging energy.

In the chosen single-particle eigenstate basis, the dy-
namics is dictated only by the tunneling /I\Llamiltonian
coupling the leads with the quantum dot. Hiyny is non-
local in this basis, but it can be described by a matrix
product operator (MPO) with limited bond dimension,
such that TDVP is not hampered by the presence of these
long-range interactions and can be efficiently used to sim-
ulate the dynamics for long evolution time.

The method is implemented by using ITensor li-
brary [25]. The source code can be found in Ref. [26].

Results.  We first focus on the equilibration of the im-
purity after it is coupled to the unbiased leads (zero-
bias quench). and here we set bias to zero (ur = pr).)
The dynamics of the impurity magnetization is predicted
to be characterized by two rates [27]: T', which deter-
mines the short-time and nonuniversal evolution; and the
Kondo temperature Tk, whose inverse, the Kondo time
tg = Tgl, defines the time scale required for the forma-
tion of the Kondo screening cloud. In the renormaliza-
tion group sense, the evolution for time I'"! < t < tx is



governed by the weak-coupling fixed point of the Kondo
problem [I6], and tx constitutes the decay time of the
magnetization in this intermediate regime towards the
formation of a spin singlet with the conduction electrons.

Therefore, we aim to get an estimate of the Kondo
temperature as a function of the ratio between the in-
teraction strength U and the effective tunneling rate I"
from the dynamics of the impurity magnetization (o*) =
(fp)—(ny). We prepare the quantum dot in the polarized
state |y = 1,7, = 0) and measure its evolution in time
after a zero-bias quench. For this analysis, we choose
L = 64 as the lead length and the hopping decay length
between ¢ = 8 and ¢ = 32, depending on the energy res-
olution needed to accurately measure the magnetization
up to times of the order of tg.

We consider two values for the interaction strength,
U =ty and U = 0.4tg, and we examine the particle-hole
symmetric point V, = —0.5U. To extract the predicted
exponential dependence of the Kondo temperature from
U/T [0, 12 6], we vary the hybridization strength T
between ~ U/20 (J ~ 0.15U) and ~ U/2 (J ~ 0.5U).

Figure a) shows the decay in time of the magnetiza-
tion for different values of U/I" while we fix U = t;. We
can easily identify three regimes: at short time t <T' 1,
the different curves collapse on each other as the relevant
time scale for the relaxation of the impurity is set only by
I' (dashed black line). Indeed, notice that time is mea-
sured in units of I~!. At longer times, the relaxation
rate depends on the ratio U/T, with a slower decay the
further the system lies in the strongly interacting/weak-
coupling regime. For these intermediate values of t, we
can extract the relaxation time by exponential fits of the
data (dot-dashed gray lines). Finally, the impurity ap-
proaches a steady state with a finite magnetization; in
Fig. a) this last regime is visible only for U = 2I". Due
to the unitary dynamics, the system keeps the memory
of its initial state and a complete relaxation to a SU(2)
invariant state can not be reached. Comparable results
have been obtained in Ref. [I2] with real-time density
matrix renormalization group (DMRG) applied to a sim-
ilar MPS construction.

Figure [2b) illustrates the inverse of the relaxation
times tx (U/T") extracted from the magnetization decay
at intermediate times [grey lines of panel (a)] as a func-
tion of U/T" and for two values of the Hubbard interaction
U. We interpret this quantity as the Kondo temperature
Tk ~ t;(l. A comparison with the renormalization group
prediction

Tk ~ UTe 0 (5)

(solid black line) shows excellent agreement with our data
for both values of the interaction strength. In the inset
the same data are displayed in logarithmic scale to em-
phasize the exponential dependence of the Kondo tem-
perature from U/I". Moreover, the two datasets perfectly
collapse on top of each other, highlighting the universal
character of the exponential decay linked to the Kondo
temperature. At very weak coupling (U/T > 1) the long
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Figure 2. (a): Expectation value of the magnetization (0*) =
(fiy) — (A} ) as a function of time (in units of A/T") in a zero-
bias quench. The dashed black lines indicates the short-time
relaxation e "*'/" while the gray dot-dashed lines highlight the
slow dynamics due to the Kondo resonance e */*% . The data
correspond to U = to (b): Kondo temperature, extracted
from the slow relaxation shown in panel(a), versus the effec-
tive interaction strength for two values of U. The solid black
line corresponds to the RG prediction for the Kondo temper-
ature Tk ~ \/ﬁef%. The inset shows the same data in
logarithmic scale to emphasize the exponential behaviour of
Tk . For large values of U/T" our accuracy is limited by the
small signal-to-noise ratio of the time evolution of the mag-
netization.

evolution time needed for an accurate estimate of the re-
laxation time can not be reached and our data deviate
from the analytical prediction. Although the entangle-
ment growth ultimately limits our ability to simulate the
evolution of large systems at long time, thus preventing
the observation of Kondo correlations for very weak cou-
pling, our method allows us to observe nonperturbative
effects emerging directly from the nonequilibrium prop-
erties of the AIM.

The data in Fig. are obtained with a zero-bias
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Figure 3. (a) Current vs voltage bias in the symmetric point
Vy = —0.5U for three different values of the hybridization
strength I' and U = to. The dashed line corresponds to
the quantized current I = Q%Vb. (b) Differential conduc-
tance as a function of the induced charge ny and of the volt-
age bias V; between the left and right leads, in the strongly
interacting/weak-coupling regime U/I" = 12.5. The zero bias
peak extending between the two sequential tunneling reso-
nances at ng = 0.5 and ny, = 1.5 signals the onset of the
Kondo effect.

quench, i.e., with a vanishing bias voltage. When dealing
with transport properties, we evolve instead the system
with a voltage bias V;, = ur, — ur between the two leads
in order to observe a quasi-stationary current. Here we
use the p—quench protocol: in this scenario the initial
state is the correlated ground state of the Hamiltonian
H (obtained through the DMRG), quenched at t = 0 to
a Hamiltonian with a finite voltage bias. To simulate the
quench dynamics at finite bias, we also need to adjust the
decay length of the hopping amplitude in the lead, &, such
that the density of states in the leads is approximately
constant in the energy interval between py, and pgr. The
convergence in the simulation parameters (¢, L, and the
TDVP time step discretization) is reached when the cur-

rent signal displays a plateau in time long enough to re-
liably extract its expectation value in the quasi-steady
state that develops after the quantum quench. The max-
imum bond dimension adopted is x = 2000 with a trun-
cation error O(1078).

In Fig. a,) we plot the quasi steady current as a func-
tion of the voltage bias for different values of the effective
tunneling rate I', while keeping fixed the Hubbard inter-
action U, at the particle-hole symmetric point Vy = 0.5U.
As we approach the strong-coupling regime I' ~ U, the

current tends toward a linear response with a quantized
dr

differential conductance = 25 i.e. there are two

av; ho

perfectly transmitting channels (dashed black line). The
Kondo temperature Tk sets the extension of the bias
window in which this quantization occurs [28]. In par-
ticular, as showed in Fig. b), the Kondo energy scale
drops down exponentially at weak coupling, U/T" > 1,
and can become smaller than the values of voltage bias
we can resolve with the chosen lead length L = 100 and
hopping decay length ¢ = 30. This explains the apparent
deviation from the quantized conductance at weak cou-
pling U/T" = 12.5 in Fig[3[a). Similar results are shown in
Ref. [I5]. We remark that, away from the strong coupling
regime, we can simulate transport for voltages larger than
the tunneling rate I'. The main limitation comes from
the fast entanglement growth when states in a large en-
ergy window contribute significantly to transport, which
happens when V}, covers a significant fraction of the leads’
bandwidth. In our model, this limitation becomes partic-
ularly relevant when V}, ~ U, t; is large enough to excite
the quantum dot and there is a strong current flow due
to sequential tunneling resonances at finite bias.

Fig. 3|(b) illustrates the differential conductance in the
weak-coupling regime (U/T" = 12.5) as a function of the
bias V4 and the induced charge parameter n, which is
linked to the chemical potential as V; = £(1 — 2n,) and
determines the expectation value of the total occupation
of the quantum dot.

We derive the differential conductance in Fig. b)
from the simulation of a p-quench protocol in which
the system is initialized in the ground state of H at
half filling, thus for the particle-hole symmetric point
(ng =1,Vy = —0.5U). At time t = 0, both the induced
charge ny and the bias voltage V; are quenched to their
final value [horizontal and vertical axis of Fig. [B|(b)].

At ngy = 0.5 and ny = 1.5 we observe two bright zero-
bias sequential tunneling resonance, corresponding to the
degeneracies between the empty and singly-occupied dot
(ng = 0.5) or between the singly and doubly occupied
dot (ng = 1.5). At finite voltage, the conductance peaks
are prolonged along the lines V, = £U(1 — 2n,) and
Vs = £U(3 — 2n,), following the resonances between
each biased lead and the quantum dot. Between the two
charge-degeneracy points, an extended zero bias peak in-
dicates the onset of the Kondo effect, although for strong
interaction and weak coupling we can not see the quan-
tization of the conductance. This limitation originates
mainly from the high voltage resolution needed to sam-



ple the current at energy below the Kondo temperature,
which for U/T = 12.5 is of the order Tk ~ 1073U, where
we expect the quantized linear response. To reach such
resolution in Vj, we need either a larger system size or a
shorter decay length £. The former makes the simulations
computationally more expensive, while the latter induces
nonphysical effects in simulations at higher energy, pre-
venting the calculation of the differential conductance in
a wide bias range. As common in nanostructure exper-
iments (see, for instance, Ref. [4]), this zero-bias peak
does not extend to ny < 0.5 or ng > 1.5 where the ground
state of the quantum dot becomes respectively, empty, or
fully occupied, thus loosing the doublet degeneracy nec-
essary for the Kondo effect.

Conclusions. In this work we applied the tensor net-
work method introduced in Ref. [19] to study the Kondo
effect in the Anderson impurity model. In particular,
we used a MPS+TDVP approach to study the dynamics
of a single-level interacting quantum dot coupled to two
fermionic leads after quantum quenches of the Hamilto-
nian parameters.

We examined both the out-of-equilibrium evolution of
the quantum dot magnetization, and the electric trans-
port features emerging in a nonequilibrium quasi-steady
state after the quench.

The magnetization dynamic allows us to obtain a good
estimate of the Kondo temperature as the inverse of its
relaxation time when the quantum dot is coupled to unbi-
ased leads. Such estimate is in agreement with renormal-
ization group results [7]. In particular, the magnetization
decay displays two typical time scales: the effective cou-
pling rate with the leads and the Kondo time scale. The
appearance of these two decay regimes for short and in-
termediate times is reminiscent of the experimental re-
sults concerning the evolution of the spin population of
impurities in 1D ultracold Yb gases [5].

Concerning the study of the conductance of the sys-
tem, relevant for transport measurements in nanostruc-
tures, our simulations allow us to study its evolution
when a voltage bias is applied between the two leads.
By looking at the emergent quasi-steady state, we can
reconstruct its Coulomb blockade properties as well as

the emergence of a Kondo peak at zero bias. The lat-
ter appears when the impurity chemical potential fixes
its ground state in the degenerate singly-occupied sector
and the related differential conductance approaches the
quantized value G = 2% in the strong-coupling regime.

We can simulate the system dynamics in a broad
parameter range, from a strongly interacting/weak-
coupling regime to a strong-coupling one, well beyond the
applicability of standard perturbative master-equation
approaches. Moreover, our method is not limited by sin-
gle site or small impurities but can be easily extended
to multilevel quantum dots or nanowires with long-range
Coulomb repulsion.

Additionally, our approach can address superconduct-
ing systems, opening the path for the study of the out-
of-equilibrium dynamics of the topological Kondo effect
[29-31], which arises in multiterminal impurities with p-
wave superconducting coupling. This kind of system can
be easily described by identifying the spin degrees of free-
dom of the AIM as a label for different spinless leads.

In general, our method can thus be used to investi-
gate transport phenomena in hybrid superconducting-
semiconducting multiterminal devices with strong
Coulomb interactions (see, for instance, Refs. [32] [33]),
without being limited to a weak-coupling regime. This
offers the possibility of investigating the variety of subgap
states [34] that can appear in these platforms, thus pro-
viding important details towards the realization of Ma-
jorana - Cooper pair boxes and other building blocks for
quantum devices [35] [36].
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The topological Kondo effect is a genuine manifestation of the nonlocality of Majorana modes. We
investigate its out-of-equilibrium signatures in a model with a Cooper-pair box hosting four of these
topological modes, each connected to a metallic lead. Through matrix-product-state techniques, we
simulate the relaxation of the Majorana magnetization, which allows us to determine the related
Kondo temperature. Then, we analyze the onset of electric transport after a quantum quench of
a lead voltage. Our results apply to Majorana Cooper-pair boxes fabricated in double nanowire
devices and provide non-perturbative evidence of the crossover from weak-coupling states to the
strongly correlated topological Kondo regime. The latter dominates at the superconductor charge
degeneracy points and displays the expected universal fractional zero-bias conductance.

The engineering of Majorana zero-energy modes
(MZMs) in hybrid superconducting-semiconducting de-
vices has been the core of strenuous theoretical and ex-
perimental activities for the last two decades [IH3]. The
detection of these subgap modes relies primarily on tun-
neling spectroscopy applied to a rich variety of plat-
forms. Tunneling spectroscopy, however, cannot provide
direct evidence of the most intriguing properties of Majo-
rana modes, namely their nonlocal and anyonic features.
Hence, it is desirable to devise a new generation of ex-
periments that balances the constraints imposed by the
current technological limitations and the pursuit of MZM
evidence beyond spectroscopy.

In this respect, the topological Kondo effect (TKE) [4-
[6] plays a crucial role: on one side, it is a transport signa-
ture of MZMs well-suited for experimental observations;
on the other, it directly results from their nonlocality,
such that it can hardly be confused with phenomena orig-
inating by nontopological subgap states [{]. The TKE
is predicted to emerge in multiterminal devices where M
external leads are coupled to a Majorana Cooper-pair box
hosting four MZMs and characterized by a sufficiently
strong charging energy E. (Fig. [1)). The TKE mani-
fests itself as a universal nonlocal zero-bias conductance
dl,/dVsze quantized at values 2e?/Mh. Such conduc-
tance is approached at low temperatures in the strong
coupling regime in correspondence of both the Coulomb
valleys and Coulomb peaks of the related devices [8], as
derived from the renormalization group (RG) analysis
of effective low-energy models describing the Majorana
Cooper-pair box and its coupling to the leads [4H6] 8-
[12].

We adopt a more elementary approach to show the on-
set of the TKE in out-of-equilibrium systems: we investi-
gate a minimal fermionic model that includes not only the
zero-energy Majorana degrees of freedom of the Cooper-
pair box, but also its quasiparticle excitations above the

Figure 1. Schematics of the system: two p-wave supercon-
ducting nanowires with MZMs at the edges are coupled by a
superconducting island (blue) with charging energy E.. Volt-
age gates (yellow) tune the island induced charge, ng x Vg,
and the coupling rates I'y with the leads (orange). Each MZM
is coupled with a single normal lead at chemical potential piq.

superconducting gap. We study, in particular, its dynam-
ics following different protocols of quantum quenches.
The time evolution is determined by the tunneling of sin-
gle electrons from the leads to the central superconduct-
ing island, and, differently from the most typical charac-
terizations of the TKE [4}, [6] 10l T3HT5], we apply matrix-
product-state simulations [I6] which do not rely on any
perturbative approximation of this coupling. This tech-
nique allows us to examine the crossover between the
predicted weak-coupling and topological Kondo strong-
coupling regimes.

The model we propose aims at describing Majorana
Cooper-pair boxes engineered from nanowires. Recent
developments in the fabrication of parallel double InAs
nanowires hybridized with Al [I7], 18] make these plat-
forms suitable to combine all the necessary elements
for the implementation of the topological Kondo model.
Such devices hold promise to investigate its transport sig-
natures as a function of the lead voltage bias, the charge
induced on the central superconducting (SC) island, and



the tunneling rates from the leads to the island (Fig. .
In the following, we will focus on deriving the dependence
of the topological Kondo temperature Tk and currents
on these physical parameters.

Model and methods.- The minimal model for the
TKE that we consider describes two parallel 1D topolog-
ical superconductors coupled by a common floating SC
island with charging energy E. and charge ng induced by
the potential V, (Fig. . These two coupled systems ef-
fectively represent two nanowires with strong spin-orbit
coupling subject to a proximity-induced SC pairing and
a suitable Zeeman interaction, which provide the most
common route to engineer MZMs [19] [20]. Their low-
energy physics is described by spinless fermions subject
to an emergent p-wave SC pairing Ap. As a result, four
MZMs {7Va}a=1....4 form at the edges of these nanowires
and each of them is coupled to a spinless normal lead.
The effective tunneling rates I', between the leads and
the MZMs can be switched off to change the number of
terminals M < 4 coupled to the system.

The simplest description for each SC nanowire is a
zero-bandwidth model [21], 22], where the lowest energy
level is the subgap state defined by two Majorana opera-
tors while the higher energy state represents Bogoliubov
quasiparticles above the SC gap. This is achieved by
considering a 2-site Kitaev chain for each nanowire, with
each of the four corresponding fermionic sites tunnel-
coupled to one of the leads. This system defines the Ma-
jorana Cooper-box [23] [24] sketched in Fig.[1] The Hamil-
tonian can be decomposed into H= f[sys—l—HL —i—f[t; ﬁsys
describes the Majorana Cooper-pair box:

Hys = enoflofuo + B(N —ng)?, (1)

o,n

where o = 1, | labels the upper and lower nanowires and
n = 0, 1 labels the two quasiparticle energy levels in each
of them[25]. N is the total charge of the box with respect
to an arbitrary offset. It includes the charge of its Cooper
pairs, as well as the electrons in the nanowires.

The two zero-energy quasiparticles are generated by
the combinations of the MZMs ]607T = (4, —%,)/2 and

f07 L = (%3 —94)/2. We label the four corresponding
low-energy states by |n4n), with i, = fg7af0,a' The
charging energy splits them into two two-dimensional de-
generate subspaces with different total fermionic parity
(=M.

The leads are modeled by Wilson chains [16] 26 [27]

4 L
=3y [ftoe*(lfl)/ﬁé:; tarlay +he ] —pal ey
a=1

1=1
(2)
with tg being the bare hopping amplitude which sets their
bandwidth and is the largest energy scale in our simula-
tions. The hopping decay length £ is a numerical auxil-
iary variable that allows us to tune the resolution at small

energies by modifying the lead level spacing [16], 27] 28].
The chemical potentials u, are used to bring the system
out of equilibrium and study nonlocal transport proper-
ties.

Finally, the tunneling Hamiltonian between the leads
and the system is

4
Ht - Z Z J@ |:<U(X,U,nf¢1,n + vaﬁynfa.n) éa,l + HC:|

a=1 o,n
3)
where g0 (Va,0n) is the particle (hole) projection of
fg’n on the real-space site coupled to the lead a. The
tunneling amplitudes J, are linked to the effective tun-

neling rates as 'y, = % Throughout this paper, we fix
the p-wave pairing Ap and the nanowire hopping ampli-
tude tsys to Ap = tsys = 0.5tg. We also induce a small
hybridization between the MZMs on each nanowire by
setting pgys = 0.01¢y in both Kitaev chains [25].

In our simulations, we map the system into a matrix
product state (MPS) by following the approach in Refs.
[16, 28]. Each MPS site represents a single-particle eigen-
state of either the leads or the nanowires (Bogoliubov
quasiparticles for nanowires) and we order them based on
their energy. The charge degree of freedom N is encoded
in an auxiliary bosonic site [25, 29]. The real-time dy-
namics is simulated using the time-dependent variational
principle (TDVP) algorithm [30H32] from the ITensor li-
brary [33] 34].

Relazation towards equilibrium.- In the dynamics of
Kondo problems, the formation of strong correlations and
the Kondo screening cloud occurs over a time scale given
by Tr' 28, B537]. Therefore, the relaxation after a
quantum quench offers a useful probe to estimate the
Kondo temperature and verify the onset of strongly cor-
related states.

The first quench protocol we consider aims at ob-
serving the relaxation of the Majorana Cooper-pair box
caused by the coupling with the leads. The SC box
is initially prepared in the ground state |00) (N = 0)
for ng < 0.5, or |10) (N = 1) for ny, > 0.5. The
box is originally decoupled from the leads, which are
set at half-filling. At time t = 0, the couplings I' are
suddenly turned on and the device begins relaxing to-
ward equilibrium. To characterize this relaxation, we
analyze the average charge on the island (N(t)), and
the effective Majorana magnetization [4, [13], defined as

(Zese (1)) = (137 (1) = 1 = 2(, (1)) )

The observed dependence of the charge (V) on ng af-
ter equilibration (Fig. shows the crossover between
the weak-coupling and the strong-coupling regime. In
particular, following Ref. [38], we characterize the weak-

coupling regime at ng ~ 0 by the slope of (N):

(N _ MApT
8’119 - Ecto

ng=0

: (4)
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Figure 2.

(a) Equilibrium charge as a function of ng, for
M = 3, E. = 0.2tg. The gray dot-dashed line corresponds
to Eq. for I' = 0.08tg. The inset shows data for differ-
ent values of E. (0.2tp and 0.4¢p) and M = 3, 4 in the weak

coupling regime, rescaled by Ngft’z L The dashed black line

corresponds to Eq. . (b) Relaxation of the charge for dif-
ferent values of ng € [0,1], E. = 0.2tp and I" = 0.04¢0. All
data are obtained with £ = 64 and £ = 16.

When the coupling I' is weak, the charge datasets cor-
responding to different choices of E., and M exhibit a
good agreement with Eq. [inset of Fig. [2[a)]. On the
other hand, the sinusoidal correction derived in Ref. [3§]
for the strong-coupling regime,

(N} = ng — < fp m) Y dn@rny), )

closely matches the numerical data for the highest value
of the tunneling rate I' = 0.08¢( [gray dot-dashed line and
red squares in Fig. [2fa)], thus suggesting the emergence
of Kondo correlations.

Importantly, the time scale associated with the relax-
ation of (N) depends on the ratio I'/E, but not on the
induced charge ny, as shown in Fig. b) where we plot
the time dependence of the relative charge variation, de-
fined as

: (R (D) - (R(0)]
ON = . . 6
OV = 1R = o)y — (N O)) ©

The vertical line marks the equilibration time and
different curves, corresponding to different values of
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Figure 3. (a): Dynamics of the Majorana magnetization for
different values of ng € [0, 1]. The dot-dashed line marks the
fast relaxation depending on I' alone. (b) Tk extracted as the

relaxation rate of (Zeg) —dashed black lines in panel (a)— as
a function of ny. (c) Tk as a function of the timescale T™' at
ng = 0.5 and in the even-parity Coulomb valley (ngy = 0.25).
Dot-dashed lines indicate the expected scaling in the valleys
[Eq. (7)], whereas the dashed line marks the scaling at the
charge degeneracy point Tk ~ MT. A non-universal prefactor
C ~ 0.2 has been manually set to approximately match the
data. All data are obtained with £ = 64, £ = 16.

ng € [0,1], converge to the asymptotic value on simi-
lar time scales.

The magnetization, instead, displays a remarkably dif-
ferent behavior, as shown in Figa). At short times,
t < R/T, the relaxation is dominated by the fast rate
I' (dot-dashed line) independently of both E. and n,.
Then, there emerges a second timescale that depends on
both I" and the energy difference 6E(ny) = E.|1 — 2ng]|
between the charge sectors N = 0 and N = 1. The
black dashed lines in Fig. a) are exponential fits of
these slower decays for different values of n, € [0,1],
while F. = 0.2t5 and I' = 0.08ty. This behavior is analo-
gous to the relaxation of the magnetization in the Ander-
son impurity model [28] [39], suggesting that this longer
timescale is associated with the energy scale Tk of the
emerging TKE.

The comparison of Figs. [3|(a) and 2(b) makes it evident
that this Kondo timescale characterizes only the Majo-
rana magnetization but not the charge; the former con-
stitutes indeed one of the effective Pauli operators, <Zeﬂ>,
at the heart of the definition of the TKE, whereas (N)
depends only on the fermionic parity of the SC island.
Therefore, we interpret this charge - “spin” separation
after the quantum quench as evidence of the emergence
of the TKE.



Motivated by this observation, we analyze the depen-
dence of the so-derived decay rates Tk on ng, I', and
E.. Figure b) depicts the fitted Tk as a function of
the induced charge for different values of the coupling I
and F, = 0.2t5. As expected from RG analyses, Tk is
larger at the charge degeneracy point, where it is pro-
portional to MT', consistently with Ref. [38]. In the
Coulomb valleys, instead, Tk is qualitatively compatible
with standard RG predictions [38]:

__5B(ng)tg
Ty ~ E.e  ZM-2Tap (7)

The different behaviors at the charge degeneracy point
(ng = 0.5) and in the even Coulomb valley (n, = 0.25)
are exemplified in Fig. c), where we plot Tk versus to/T
for E. = 0.2ty (circles) and E. = 0.4ty (triangles), with
both M = 3 (full symbols) and M = 4 (empty symbols).
The Kondo temperature extracted at ny = 0.5 is inde-
pendent of both E. and M and it decreases with a power
law compatible with T ~ IT" (dashed line). For large val-
ues of I', the magnetization can change sign, preventing
us from extracting Tk with high precision (see also the
large errorbar at ny = 0.5 in Fig. b)) When looking
at the Coulomb valleys, instead, T shows a substantial
drop when increasing the charging energy: not only it is
smaller for E, = 0.4tg, but it decreases faster with 1/T", in
accordance with Eq. (dot-dashed lines). Notice that
the data for M =4, E. = 0.4tg and M = 3, E. = 0.2¢g
almost coincide as Eq. predicts the same behavior but
for a factor 2 in front. Our data display a concavity that
is absent in Eq. @ and suggests a competing power law
dependence on I' in agreement with NRG results of the
low-energy effective model [10].

Nonlocal transport.- To investigate multiterminal
transport properties, we adopt a different quench pro-
tocol, using DMRG to prepare the ground state corre-
sponding to the device coupled with M leads at equilib-
rium (g = 0) and induced charge ny. In general, such a
state is a superposition of different charge and magneti-
zation states. At t = 0 we quench the chemical potential
in the first lead to a finite value p; = eV}, and com-
pute the average current flowing through the remaining
connected terminals. We refer to the latter as average
nonlocal current.

RG predicts a fractional zero-bias nonlocal conduc-
tance, GTkg = %%, independent from all other physical
parameters for T' < Tk, both in the Coulomb valleys[4-
0], and at the charge-degeneracy points [ [IT], [T5] [3§].
Our simulations capture this fractional conductance for
M = 3,4 for sufficiently strong coupling in proximity of
the charge degeneracy point where T is maximum and
the behavior of this fixed point can be observed for an ex-
tended voltage bias window (Fig. . Close to the charge
degeneracy point, we observe non-Fermi liquid power-law
corrections with non-integer exponents which, however,
do not seem compatible with the first-order scaling pre-
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Figure 4. Average nonlocal current as a function of the volt-
age bias at ng = 0.5, for M = 3, 4. The dashed line highlights
the TKE prediction G = %Go. The data are obtained with
L =100 and & = 32.

dicted by bosonization and RG [8| [T}, 15} 25, [38], 40].

Our simulations are performed at zero temperature,
but, away from the charge degeneracy point, Tx becomes
comparable with the energy we introduce with the finite
bias eV}, such that we cannot easily capture the universal
strong-coupling features of the model. In Fig. [f] we plot
the average nonlocal current (M = 3 and E. = 0.4¢)
divided by the voltage bias as a function of n,. We set
w1 = eV = 0.02tg, which is small enough to probe the
response close to the linear regime, yet the data display
a good signal-to-noise ratio allowing for a reliable esti-
mate of the current. The TKE prediction is met only at
the charge degeneracy point and strong coupling, consis-
tently with Fig. E|, while the strong n, dependence con-
firms that we are not deep in the TKE regime; however,
there are several hints of the emergence of a strongly-
correlated Kondo state also in the Coulomb valleys.

In Fig. we compare our numerical data with the
conductance of a single noninteracting resonant fermionic
level (dashed lines), which represents the charge degree
of freedom coupled with M = 3 leads:

[ V)

e 4172

Gnlng, n) = + 30 +4[p — Ec(1 = 2ng)]2 )

Gy exhibits a peak scaling as 4Go/M? with width ~
MT/E.. The data with the weakest coupling (I' =
0.02tg, blue circles) match well the corresponding res-
onant level approximation (8], as expected in a weak
coupling regime. When we increase I', our data dis-
play large discrepancies with Eq. , with a conduc-
tance rapidly approaching the TKE value of %GO (hor-
izontal dot-dashed line) for n, ~ 0.5. Indeed, in this
regime, the applied voltage pu; = 0.02¢( is one order of
magnitude smaller than the estimate of the Kondo tem-
perature, Tx ~ 0.1ty in Fig. c). Moreover, we see a
substantial current flowing deep in the Coulomb valleys
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Figure 5. Nonlocal current as a function of ng, for E. = 0.4to.
The dashed lines correspond to the resonant level approxima-
tion, Eq. ( . The horizontal dot-dashed line is the TKE

prediction 3 2"2 with M = 3.

(T' = 0.08tp, 0.04¢¢) with apparent plateaus that suggest
a crossover to the TKE regime. This is further confirmed
by the analysis of the data averaged over the decay length
¢ for ny = 0.25, T' = 0.08tg, and py = 1073ty [25].

Conclusions.- We analyzed the out-of-equilibrium
properties of a minimal model for the topological Kondo
effect. We aimed at a microscopic description alterna-
tive to RG approaches and a qualitative understanding
of transport signatures that may arise in double nanowire
experiments. The data we collected present evidence of
the onset of strongly-correlated states compatible with
a crossover between a weak-coupling and a topological
Kondo regime.

First, the charge and the effective magnetization of the
Majorana Cooper-pair box are characterized by different
relaxation behaviors: the former only depends on the
system-leads hybridization I', whereas the latter presents
two separate decay timescales. In analogy with the dy-
namical features of the Anderson impurity model, we
used the longer timescale to estimate the Kondo temper-

ature associated with the TKE, with results compatible
with the RG predictions [4, [6].

Second, the nonlocal multiterminal conductance in the
intermediate to strong coupling regimes matches the pre-
dicted value Grxg = 2Go/M at the charge degeneracy
point, where Tk is the largest. In the Coulomb valleys,
it presents large deviations from the noninteracting res-
onant level approximation that well describes the weak-
coupling regime and two-terminal devices [16]. When
the resonant level approximation fails, the conductance
displays a plateau in the Coulomb valleys, hinting at a
crossover to the topological Kondo regime.

Our results are obtained through a matrix product
state approach that allows for the study of topological
Kondo models without recurring to perturbation theory
in the Majorana - lead coupling and does not require any
particular hierarchy of the involved energy scales. It is
therefore well suited to understand the crossover between
strong and weak coupling regimes as well as the correc-
tions to the RG predictions on the TKE when we probe
the system at energy scales comparable with Tk .

Finally, our method can be extended to deviations
from the minimal topological Kondo models, such as
the coupling of Majorana modes [9] caused by crossed-
Andreev and cotunneling processes, and adopted to pre-
dict the transport features in a wide variety of strongly
interacting nanodevices based on systems with quantum
dots coupled to superconducting islands[41H44].
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Supplemental Material

Minimal two-sites Kitaev chain description

In this Appendix we review the minimal two-site Kitaev chain description we use for modelling each nanowire. It
should be noted that this model can be extended for longer chains. The Hamiltonian for the chain ¢ = 7, is given

by:
2

2T =3 [ prsys df yd; , + ( taysdi 1 od; o + Ape®d,  d, —|—H.c.>} : (9)

j=1

where the index j labels the site and ® is the superconducting phase of the aluminum backbone. In our simulations,

we set tgys = Ap = 0.5t and pgys = 0.01¢y to avoid a perfect degeneracy of the states.

Before constructing the



MPS representation of the full system, we diagonalize the quadratic Hamiltonians in Equation (@ and define the
quasiparticle excitations.

For simplicity, in the following, we consider only the upper chain, as the two chains are indistinguishable at
equilibrium.

The physics of the MZMs is manifest by expressing each fermionic operator in terms of two Majorana fermions. In
the case of the upper wire, we define:

R e—i®/2

djp = 2 (’Vj,B - Wj,A) (10)
as schematically represented in Fig. @ We consider the limit with jsys = 0 and Ap = tgys, such that the Hamiltonian
is given by ngt) = —iA PY2,4"1, p and couples Majorana fermions only at adjacent lattice sites (Fig. |§I) The ends of
the chain support the unpaired MZMs 4, = 4, 4 and 4, = 4, 5 which allow us to define the zero-energy quasiparticle
operator fo 4 introduced in the main text. In the quasiparticle basis, the first excited state has energy €+ = 2Ap

and corresponds to the operator fl b= (&2)14 — ﬁl,B)/Q’ such that the Hamiltonian can be written as

Y =280 (F1f15-1/2). (11)
The same construction is valid for the lower chain.
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Figure 6. Each fermionic site of the Kitaev chain can be decomposed in two Majorana operators to make the MZMs physics more
transparent. Quasiparticles states are represented schematically on the right. The thick blue link represents the interaction in

Eq. .

The matrix product state construction

Auxiliary charge site

In order to simulate the topological Kondo model, we need to account for both its superconducting pairing and the
charging energy of the Cooper-pair box. Importantly, the mean field BCS description of the superconducting system
does not preserve the total particle number, but only its parity. This means that we cannot deduce the total charge
of the Cooper-pair box N directly from the quasiparticle MPS construction. In order to overcome this problem we
add an independent auxiliary charge site to the tensor network representation to keep track of the charge and its
dynamics [16] [29].

First of all, one can promote the SC phase e ~*®/2 in as the operator e ~“®/2 which lowers the number of electrons
on the box by one (due to the charge phase relation []\7 ,®] = —2i). In this way, the decomposition in Eq. enables
to separate this charge degree of freedom from the quasiparticle number. We can therefore describe charge dynamics
by adding to our MPS an auxiliary site whose local Hilbert space is spanned by the eigenstates |N) of the charge N
[16].

The tunneling Hamiltonian ﬁt becomes the sum of three-site operators of the form:

4
Ht = - Z Z Joceiq)/2 |:(u@70,7lf;,n + U(X7<77nfa.7t> éa,l +He.|. (12)

a=1 o,n

where the operator e1%/2 acts on the auxiliary site and raises/lowers the charge eigenvalue N. Finally, charging energy

costs are straightforwardly taken into account by considering the state of the auxiliary site, via }AIC =F, (]\7 — ng> .



The auxiliary charge site construction is numerically implemented by restricting its local Hilbert,
N € [~Nmax, Nmax); With Npax = 5 (such that e**®/2 are represented as 11 x 11 matrices). Moreover, to re-
move the redundancy introduced by the auxiliary site, we constrain the parity of N to be the same as the parity
of the total occupation of the quasiparticle states in the Majorana Cooper-pair box [I6]. Namely, once defining the
operator

P=(—1)¥ e Fhofus (13)
the following relation

Plthpnys) = [¥phys), (14)

has to be valid for any physical states |¢phys). Our MPS and matrix product operator construction encodes such Zs
constraint.

TDVP Dynamics and transport quantities

We simulate the dynamics of the system through the TDVP algorithm, which is not limited by the long-range
Hamiltonian resulting from the energy basis choice for the MPS. The Hamiltonian H is represented as a matrix
product operator of maximum bond dimension x = 16.

Through a suitable choice of the system size and Wilson decay length £, we observe the emergence of non-equilibrium
quasi-steady states, that provide faithful descriptions of the physical behavior of the (infinite) system in its stationary
state (see, for instance, Refs. [45,40]). An example of the current after the quench is depicted in Fig. a). To extract
the values of the currents analyzed in the main text, we average the signal after it reaches the stationary value and
estimate the errorbars through standard binning techniques.

Thanks to the chosen basis, after the quantum quench, the entanglement entropy of the system increases logarith-
mically with time [16], [47] and it is mainly localized in an energy window proportional to the voltage bias. Outside
that window, the entanglement entropy is mostly time-independent, as we show in Fig.[7|b) and (c). See Ref. [16] for
more details about the MPS construction and dynamics.
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Figure 7. Typical dynamics of the current and entanglement entropy after a quantum quench for a three-terminal device. (a)
Time dependence of the current on each lead. I; has a negative sign because it is the only in-going current. I = 0 because
the corresponding lead is decoupled from the device. (b) Entanglement entropy at each bond of the MPS as a function of
energy and time. The three arrows mark the horizontal line cuts corresponding to the curves shown in panel (c). Simulation
parameters: £ = 100, £ = 32.

We finally observe that the Hamiltonian we adopt to describe the double-nanowire model displays an additional
symmetry with respect to the most common topological Kondo models [4HG]. Indeed, the dynamics we analyze
separately preserves the two fermionic parities:

PT — (_1)Za=1,2 PO éL,laa,l"‘zn=o,1 flmfrm , (15)
]fl — (_1)Zo¢:3,4 Zf:l él,zéaal"'znzo,l fl,diw . (16)
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Figure 8. Left: Nonlocal current as a function of the varying coupling strength I's, at the charge degeneracy point ngy = 0.5
and in the even valley ny = 0.25. Right: Nonlocal currents as a function of the varying coupling strength I's, at the charge
degeneracy point ny = 0.5. The two horizontal dashed lines mark G = %Go for M = 3,4. In both panels E. = 0.4,
eV, = 0.01tp, L = 100, and & = 32.

These symmetries reflect the fact that we are neglecting crossed-Andreev and direct cotunneling processes mediated
by the superconducting island between the two nanowires. These conservations have the important effect of breaking
the particle-hole-like symmetry of the dynamics between systems characterized by ng, and 1 —ng4, as can be seen from
Fig.[5] of the main text, at large coupling. The initial ground states |00) (N = 0) for n, < 0.5 and |10) (N = 1) for

ng > 0.5 correspond to different sectors of PL and are not mapped one into the other by the symmetry.

Further transport results
Asymmetric couplings

Here we investigate the effect of introducing an asymmetry in the couplings I, on the transport properties.

We first analyze a device with three leads (I's = 0), where two of them have the same coupling strength I'y =T'y =
0.08ty, which corresponds to the strong coupling regime explored in the main text, while the third is varied. In Fig.
(right panel) we plot the nonlocal currents I3 and I divided by the bias on lead 1 as we vary I's € [0,1.6T';]. At the
charge degeneracy point (orange symbols), the data suggest that the current is approximately stable for a broad range
of couplings I's 2 I'1, and, within the error bars, is compatible with the linear conductance associated to the TKE
(horizontal dashed line). As I's decreases, I5 also decreases and vanishes when the lead is finally decoupled from the
system. At the same time, Iy increases and approaches the quantized value I, = GV}, when the device has only two
terminals, as we expect from the resonant tunneling mediated by MZMs with symmetric couplings [16], 48]. As we
move deeper in the Coulomb valley (ny = 0.25, blue symbols), the system appears to be further away from the TKE
regime and the current shows a roughly linear dependence on I's. Interestingly, however, the current I, decreases
upon switching off I's, despite keeping I'4 constant. This is in contrast with the single resonant level prediction

e? 412

Cnlng, 1) = 3 Y Ere a0 = Bl = 2ng)]2

(17)

confirming that a contribution to the current originating from a strongly coupled state is present also in the Coulomb
valleys, even though the TKE quantization of the conductance is not recovered for the chosen parameter ranges.

Let us now focus on the crossover between M = 4 and M = 3: we consider a four-terminal device where we tune the
coupling I'y from the symmetric configuration, I', = 0.08¢y on any lead, to I'y = 0, while keeping a small voltage bias
eV, = 0.01tg on lead 1. In Fig. [8| (right panel) we show the nonlocal currents I and I4 for ny = 0.5, where the Kondo
tmperature is maximal, as we switch off I's. When I'y = I'y, the current on both leads is again compatible with the
TKE prediction with M = 4 (lower horizontal dashed line). As I'y decreases, I and I, display opposite behaviors;
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Figure 9. Time dependence of the nonlocal current for M = 3 and ny = 0.25, averaged over 4 values of { = 2,4,8,16. The
horizontal dashed line marks the TKE prediction.

the former decreases and vanishes following I's while the latter displays first a rather flat plateau followed by a rapid
increase to match the TKE prediction for M = 3 when I'y — 0 (higher horizontal dashed line). The current on lead
3 (data not shown) follows closely the signal on Iy.

Low bias transport

Transport simulations at very low bias are hampered by a low signal-to-noise ratio that prevents from an accurate
estimate of the average current in the nonequilibrium quasi-steady state. This limitation is relevant for low Kondo
temperatures as, for instance, in the Coulomb valleys. To partially circumvent this issue, inspired by the so-called
z-trick [49] commonly used in NRG methods, here we consider data obtained by averaging over different logarithmic
discretizations of the energy levels of the leads. In particular, we average the currents over different decay lengths of
the hopping amplitude in the leads. In Fig. |§|We plot an example of this procedure: we consider ny = 0.25 (even-parity
Coulomb valley), E. = 0.4tg, M = 3, and ' = 0.08¢t9. The corresponding Kondo temperature extracted from the
magnetization dynamics is Tk ~ 0.01tg, see Fig.[3](c) of the main text. To capture the transport signature of the
TKE, we perform different simulations with a small bias eV, = 1073¢y on lead 1 and & = {2,4,8,16}. We then average
the outgoing current over the different values of £. This reduces the amplitude of the current oscillations, and leads
to a good match with the TKE prediction Grxg = %GO also in the Coulomb valleys.

Finite bias corrections

Finally, we discuss the finite bias corrections to the currents close to TKE linear response behaviour, I = %GOVb.
In a renormalization group sense, a power law correction G' = 2Go/M — AV, is related to the scaling dimension of the
most relevant operator which arises at the TKE fixed point. In particular, a fixed point described by the Fermi liquid
(FL) theory displays a quadratic correction for the conductance (o« = 2). The topological Kondo effect, instead, is
predicted to display non-Fermi liquid corrections defined by the universal fractional exponent « = 2(1 — 2/M)[1T], 40].

In Fig. we show the bias dependence of the current deviation from the TKE regime, I — %GoVb, for M = 3,4.
The data show a clear power-law behavior, particularly for bias values V; that are not excessively small (such that the
signal-to-noise ratio is reliable). In the displayed cases, the deviation of the current from the power-law fits is below
the numerical precision ~ 1073,

In all cases, we observe a non-Fermi liquid scaling which significantly deviates from the cubic FL behaviour of the
current Vb?’. However, the fitted exponents do not match the RG predicted values « + 1 = 3 — 4/M. The absence of
a clear separation of energy scales in the problem might be a source of deviation from the perturbative RG analysis.
Moreover, close to the charge degeneracy point, intermediate fixed points are believed to emerge [I1]. Finally, the
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Figure 10. Deviation of the average non-local current from the linear regime I = %G()Vb, for M = 3,4, ng = 0.5 and

3
E. = 0.4tg. The black dashed lines are power-law fits bx® of the data. The values of a for M = 3 are 1.42(1) (I" = 0.02to),
1.80(1) (' = 0.04t0), and 2.41(3) (I' = 0.08to), while for M = 4 we obtain 1.41(2) (I' = 0.02t), 1.73(2) (I' = 0.04t,), and
2.38(4) (I' = 0.08t0). The grey line indicates the numerical precision.

fitted exponents seems to depend continuously on the coupling strength I' and, while this analysis has shed light on
a non-Fermi liquid behaviour, further analysis is needed to understand these power-law corrections.
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